Novel genetic loci identified for high-frequency hearing loss

April 26, 2012, BioMed Central

The genetics responsible for frequency-specific hearing loss have remained elusive until recently, when genetic loci were found that affected high-frequency hearing. Now, a study published today in the open access journal BMC Genetics reports, for the first time, genetic loci with effects that are limited to specific portions of the hearing frequency map, particularly those that are most affected in ageing-related hearing loss.

Presbycusis is the loss of hearing for high-pitched sounds that gradually occurs in most individuals as they grow older. Although many loci have been linked to hearing deficits in humans, many loci that contribute to tonotopy, i.e. the organization of the that permits detection and discrimination of sounds of different frequency, remain undiscovered.

A group from the National Institute on and Other Communication Disorders (NIDCD) at the National Institutes of Health (NIH), used genome-wide linkage analysis in NIH Swiss mice to successfully identify two quantitative trait loci that affect hearing at – Hfhl1 and Hfhl3. Specifically the effect of the locus Hfhl1 is thought to be confined to hearing frequencies from 25-44kHz of the tonotopic map, whilst Hfhl3 is restricted to the 35-44kHz region.

Lead author James M Keller commented, "Our results support the hypothesis that frequency-specific hearing loss results from variation in gene activity along the cochlear partition and suggest a strategy for creating a map of genes that influence differences in hearing sensitivity and or vulnerability in restricted portions of the cochlea."

He continued, "The high-frequency hearing loss loci, Hfhl1 and Hfhl3, explain only a portion of the variation in high-frequency observed in these mice. Other loci, and cross talk between genes at different loci, probably account for much of the remainder - in fact we detected a number of additional loci that could account for some of the residual variation. Additional genotyping and analysis could greatly increase our understanding of the genetic architecture of the HFHL phenotype."

More information: Genome-wide linkage analyses identify Hfhl1 and Hfhl3 with frequency-specific effects on the hearing spectrum of NIH Swiss mice James M Keller and Konrad Noben-Trauth BMC Genetics (in press)

Related Stories

Recommended for you

Discovery of the 'pioneer' that opens the genome

January 23, 2018
Our genome contains all the information necessary to form a complete human being. This information, encoded in the genome's DNA, stretches over one to two metres long but still manages to squeeze into a cell about 100 times ...

Researchers identify gene responsible for mesenchymal stem cells' stem-ness'

January 22, 2018
Many doctors, researchers and patients are eager to take advantage of the promise of stem cell therapies to heal damaged tissues and replace dysfunctional cells. Hundreds of ongoing clinical trials are currently delivering ...

Genes contribute to biological motion perception and its covariation with autistic traits

January 22, 2018
Humans can readily perceive and recognize the movements of a living creature, based solely on a few point-lights tracking the motion of the major joints. Such exquisite sensitivity to biological motion (BM) signals is essential ...

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

Two new breast cancer genes emerge from Lynch syndrome gene study

January 18, 2018
Researchers at Columbia University Irving Medical Center and NewYork-Presbyterian have identified two new breast cancer genes. Having one of the genes—MSH6 and PMS2—approximately doubles a woman's risk of developing breast ...

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.