How human cells 'hold hands'

April 30, 2012

University of Iowa biologists have advanced the knowledge of human neurodevelopmental disorders by finding that a lack of a particular group of cell adhesion molecules in the cerebral cortex -- the outermost layer of the brain where language, thought and other higher functions take place -- disrupts the formation of neural circuitry.

Andrew Garrett, former neuroscience graduate student and current postdoctoral fellow at the Jackson Laboratory, Bar Harbor, Maine; Dietmar Schreiner, former postdoctoral fellow currently at the University of Basel, Switzerland; Mark Lobas, current neuroscience graduate student; and Joshua A. Weiner, associate professor in the UI College of Liberal Arts and Sciences Department of Biology, published their findings in the April 26 issue of the journal Neuron.

is the way in which cells "hold hands" -- how one cell binds itself to another cell using specific molecules that protrude from cell membranes and bind each other together. The process is necessary to form all body tissues. The UI researchers studied a clustered family of 22 genes (gamma-protocadherins) that make such cellular hand-holding possible by encoding cell adhesion molecules.

In their previous work, they found that mice lacking the molecules exhibited death of neurons and loss of synapses in the . So, they knew the gamma-protocadherins were important for neurons in the spinal cord, but not whether this was true in the cortex. However, in the current study, they found that an absence of the cell adhesion molecules had a significant and much different effect.

"We found that mice lacking the gamma-protocadherins in the cortex do not exhibit the severe loss of synapses and increased that we observed in the spinal cord," says Weiner. "Instead, we found that the had severely reduced development of their dendrites, tree-like branched structures that receive input from other neurons.

"We discovered the reason for this: gamma-protocadherins normally inhibit a key signaling pathway within neurons that acts to reduce dendrite branching. In the absence of the gamma-protocadherins, this signaling pathway was hyperactive, leading to defective branching of cortical neuron dendrites," says Weiner.

In their previous work, the researchers showed that these molecules -- the 22 distinct adhesion molecules, the gamma-protocadherins -- are critical for the development of the animal, because when all of the genes are deleted from mice, they die shortly after birth with a variety of neurological defects including loss of connections (synapses) and excessive neuronal cell death in the spinal cord -- an early-developing part of the nervous system.

Because those mutants die so young, the researchers could not assess a role for the gamma-protocadherins in the . The reason is that the cortex develops only after birth. They used new genetic technologies to remove the gamma-protocadherins only from the cerebral cortex, which allowed the animals to survive to adulthood.

Weiner says that the latest research findings may help researchers to better understand the causes of various human developmental disorders.

"Human such as autism, mental retardation, and schizophrenia all involve dysregulation of dendrite branching and synaptogenesis," he says. "Our identification of a large family of 22 cell -- which we previously showed interact with each other in very complex and specific ways -- as new regulators of dendrite branching raises the question of whether specific interactions between distinct neuronal groups during development is important for the spreading of dendritic branches. If so, the gamma-protocadherins and/or the signaling pathways they regulate might be disrupted in a variety of human brain disorders."

Now that the researchers have shown that the gamma-protocadherin family, as a whole, is critical for dendrite branching, they plan to become more focused in their research. Next, they plan to ask whether specific interactions between individual members of the family are important for instructing neurons on the location and size of dendrite growth.

Related Stories

Recommended for you

New surgical strategy offers hope for repairing spinal injuries

July 28, 2017
Scientists in the UK and Sweden previously developed a new surgical technique to reconnect sensory neurons to the spinal cord after traumatic spinal injuries. Now, they have gained new insight into how the technique works ...

Scientists block evolution's molecular nerve pruning in rodents

July 27, 2017
Researchers investigating why some people suffer from motor disabilities report they may have dialed back evolution's clock a few ticks by blocking molecular pruning of sophisticated brain-to-limb nerve connections in maturing ...

In witnessing the brain's 'aha!' moment, scientists shed light on biology of consciousness

July 27, 2017
Columbia scientists have identified the brain's 'aha!' moment—that flash in time when you suddenly become aware of information, such as knowing the answer to a difficult question. Today's findings in humans, combined with ...

Social influences can override aggression in male mice, study shows

July 27, 2017
Stanford University School of Medicine investigators have identified a cluster of nerve cells in the male mouse's brain that, when activated, triggers territorial rage in a variety of situations. Activating the same cluster ...

Scientists become research subjects in after-hours brain-scanning project

July 27, 2017
A quest to analyze the unique features of individual human brains evolved into the so-called Midnight Scan Club, a group of scientists who had big ideas but almost no funding and little time to research the trillions of neural ...

Researchers reveal unusual chemistry of protein with role in neurodegenerative disorders

July 27, 2017
A common feature of neurodegenerative diseases is the formation of permanent tangles of insoluble proteins in cells. The beta-amyloid plaques found in people with Alzheimer's disease and the inclusion bodies in motor neurons ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

NeutronicallyRepulsive
not rated yet Apr 30, 2012
That's "why can't we just all get along" in reality.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.