Intravenous vaccination promotes brain plasticity and prevents memory loss in Alzheimer's disease

April 23, 2012, Federation of American Societies for Experimental Biology

Alzheimer's disease (AD) is an incurable, progressive neurodegenerative disease affecting over five million people worldwide, and is the leading cause of dementia in the elderly. Currently, intravenous human immunoglobulin (IVIG) treatment is being explored in multiple off-label uses other than immunotherapy, including AD. Several clinical studies assessing the tolerability and efficacy of IVIG in Alzheimer's disease subjects are in progress with inconsistent outcomes. Recent studies conducted by Dr. Giulio Maria Pasinetti, Saunders Family Chair and Professor in Neurology and Psychiatry at Mount Sinai School of Medicine in New York, suggests that the divergent outcomes in Alzheimer's disease clinical studies of IVIG may be due to differences in temporal administration and administered dosages.

Dr. Pasinetti and his team of investigators recently found that prolonged administration of human immunoglobulin in models of Alzheimer's disease, using a dose of immunoglobulin ~5-20-fold less than equivalent doses used in Alzheimer's disease patients, is effective at attenuating Alzheimer's disease-type while promoting synaptic plasticity. "This experimental observation provides a rational basis for rectifying the inconsistency of study outcomes in Alzheimer's disease clinical trials with IVIG," said Dr. Pasinetti. Recent evidence from Dr. Pasinetti's laboratory and others suggests that a mechanism by which IVIG may benefit cognition is through the increase of brain contents of certain mediators of , such as the complement component-derived anaphylatoxins C5a and C3a, capable of promoting synaptic plasticity and neuroprotection.

"We now have the much needed information supporting the potential application of slow release of immunoglobulins delivered subcutaneously to delay the onset of Alzheimer's disease, even at pre-symptomatic stages of the disease" said Dr. Pasinetti.

Dr. Pasinetti hypothesizes that the slow release of immuglobulins into the circulation and eventually into the brain for a protracted period of time may delay Alzheimer's disease onset and eventually its progression through epigenetic changes in the downstream gene expression of C5a-mediated pCREB-C/EBP signaling components associated with modulation of and eventually learning and memory functions.

Explore further: Natural chemical found in grapes may protect against Alzheimer's disease

Related Stories

Natural chemical found in grapes may protect against Alzheimer's disease

July 15, 2011
Researchers at Mount Sinai School of Medicine have found that grape seed polyphenols—a natural antioxidant—may help prevent the development or delay the progression of Alzheimer's disease. The research, led by Giulio ...

Recommended for you

Alzheimer's disease: Neuronal loss very limited

January 17, 2018
Frequently encountered in the elderly, Alzheimer's is considered a neurodegenerative disease, which means that it is accompanied by a significant, progressive loss of neurons and their nerve endings, or synapses. A joint ...

Anxiety: An early indicator of Alzheimer's disease?

January 12, 2018
A new study suggests an association between elevated amyloid beta levels and the worsening of anxiety symptoms. The findings support the hypothesis that neuropsychiatric symptoms could represent the early manifestation of ...

One of the most promising drugs for Alzheimer's disease fails in clinical trials

January 11, 2018
To the roughly 400 clinical trials that have tested some experimental treatment for Alzheimer's disease and come up short, we can now add three more.

Different disease types associated with distinct amyloid-beta prion strains found in Alzheimer's patients

January 9, 2018
An international team of researchers has found different disease type associations with distinct amyloid-beta prion strains in the brains of dead Alzheimer's patients. In their paper published in Proceedings of the National ...

Advances in brain imaging settle debate over spread of key protein in Alzheimer's

January 5, 2018
Recent advances in brain imaging have enabled scientists to show for the first time that a key protein which causes nerve cell death spreads throughout the brain in Alzheimer's disease - and hence that blocking its spread ...

Molecular mechanism behind HIV-associated dementia revealed

January 5, 2018
For the first time, scientists have identified and inhibited a molecular process that can lead to neurodegeneration in patients with HIV, according to a Northwestern Medicine study published in Nature Communications.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.