Lymphoma therapy could deliver a double punch

April 30, 2012

B cell lymphomas are a group of cancers of that originate in lymphoid tissue from B cells, the specialized immune cell type that produces antibodies. The development of B cell lymphoma is associated with several known genetic changes, including increased expression of MYC, a transcription factor that promotes cell growth and division.

In this issue of the JCI, Andrei Thomas-Tikhonenko and his colleagues at the University of Pennsylvania in Philadelphia report on their studies to better understand the that interact with MYC and contribute to development. Using a mouse model of lymphoma, they found that a transcription factor in B cells known as PAX5 controls the level of MYC in cells. They showed that PAX5 stabilizes MYC protein levels through a previously undescribed pathway involving CD19, a expressed on . When the research team looked in patient samples, they found that high levels of CD19 correlated with high MYC activity, and that both predicted poor patient survival time.

Their findings uncover a CD19-dependent pathway that contributes to the cancerous growth of B cell lymphomas. Their work has direct implications for therapies targeting CD19 that are currently in clinical trials, and suggest that these therapies may reduce cancer-promoting signaling in addition to depleting total B cell numbers.

Related Stories

Recommended for you

Study may explain failure of retinoic acid trials against breast cancer

July 25, 2017
Estrogen-positive breast cancers are often treated with anti-estrogen therapies. But about half of these cancers contain a subpopulation of cells marked by the protein cytokeratin 5 (CK5), which resists treatment—and breast ...

Physical activity could combat fatigue, cognitive decline in cancer survivors

July 25, 2017
A new study indicates that cancer patients and survivors have a ready weapon against fatigue and "chemo brain": a brisk walk.

Breaking the genetic resistance of lung cancer and melanoma

July 25, 2017
Researchers from Monash University and the Memorial Sloan Kettering Cancer Center (MSKCC, New York) have discovered why some cancers – particularly lung cancer and melanoma – are able to quickly develop deadly resistance ...

New therapeutic approach for difficult-to-treat subtype of ovarian cancer identified

July 24, 2017
A potential new therapeutic strategy for a difficult-to-treat form of ovarian cancer has been discovered by Wistar scientists. The findings were published online in Nature Cell Biology.

Immune cells the missing ingredient in new bladder cancer treatment

July 24, 2017
New research offers a possible explanation for why a new type of cancer treatment hasn't been working as expected against bladder cancer.

Anti-cancer chemotherapeutic agent inhibits glioblastoma growth and radiation resistance

July 24, 2017
Glioblastoma is a primary brain tumor with dismal survival rates, even after treatment with surgery, chemotherapy and radiation. A small subpopulation of tumor cells—glioma stem cells—is responsible for glioblastoma's ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.