Mutations in 3 genes linked to autism spectrum disorders

April 4, 2012, The Mount Sinai Hospital

Mutations in three new genes have been linked to autism, according to new studies including one with investigators at Mount Sinai School of Medicine. All three studies include lead investigators of the Autism Sequencing Consortium (ASC). The findings, in a trio of papers revealing new genetic targets in autism, are published in the April 4th online issue of the journal Nature. The studies provide new insights into important genetic changes and the many biological pathways that lead to autism spectrum disorders (ASD).

Gene mutations are glitches in which can put you at risk for a particular disease. The genes with mutations identified in the studies – CHD8, SNC2A, and KATNAL2 – were discovered with a new state-of-the-art genomics technology known as exome sequencing, where all protein coding regions of the genome, called the exome, are analyzed. The researchers say that with further characterization of the genes and sequencing of genes in thousands of families, they will be able to develop novel therapeutics and preventive strategies for .

"We now have a good sense of the large number of genes involved in autism and have discovered about 10 percent of them," said Joseph Buxbaum, PhD, Director of the Seaver Autism Center and Professor of Psychiatry, Genetics and Genomic Sciences, and Neuroscience at Mount Sinai School of Medicine. "We need to study many more parents and their affected children if we are to uncover the genes important in ASD. As these genes are further characterized, this will lead to earlier diagnosis and novel drug development. This work is crucial for advancing autism treatment."

In the study, ASC researchers hypothesized that de novo mutations account for a substantial fraction of the risk for autism. De novo gene mutations are mutations that show up in affected children for the first time and result from mutations in the production of sperm or egg.

Founded by Dr. Buxbaum, the Autism Sequencing Consortium is an international group of autism genetics researchers that is working to identify additional genetic causes of autism through large-scale next-generation sequencing. The institutions involved in this study sequenced data from more than 500 families (both parents and the affected child), examining the protein-enriched areas of the genome.

"When the same mutations are found in multiple affected children and none are found in children without autism, we believe that we have identified mutations that collectively affect a higher proportion of individuals with autism," said Dr. Buxbaum. "Our studies revealed that the proteins encoded by the mutated genes interact with each other far more than expected, demonstrating significantly greater connectivity than would be expected."

Two other papers from groups participating in the Autism Sequencing Consortium are also featured in the same issue of Nature. Led by Matthew State, PhD, Yale School of Medicine, the first identified several highly disruptive mutations in associated with ASD. The results show that multiple variants on one gene identify risk factors for ASD. The second study led by Evan Eichler, PhD at the University of Washington discovered that certain mutations associated with ASD are mainly of paternal origin. Their findings also support previous research showing an increased risk of developing ASD in children of older fathers.

Explore further: Autism Speaks and BGI to complete whole genome sequencing on 10,000 with autism

Related Stories

Autism Speaks and BGI to complete whole genome sequencing on 10,000 with autism

October 13, 2011
Autism Speaks, the world's largest autism science and advocacy organization, and BGI, the largest genomic organization in the world and a global leader in whole genome sequencing, jointly announce their partnership to create ...

Researchers link spontaneous gene mutations to autism

May 16, 2011
(Medical Xpress) -- Using high-throughput gene sequencing technology, researchers have identified several harmful spontaneous gene mutations in children with autism spectrum disorders (ASDs) that may cause the disorder.

Further support for a role of synaptic proteins in autism spectrum disorders

February 9, 2012
A new study combines genetic and neurobiological approaches to confirm that synaptic mutations increase the risk of autism spectrum disorders (ASDs). It also highlights a role for modifier genes in these disorders. Published ...

X marks the spot -- TBL1X gene involved in autism spectrum disorder

November 4, 2011
Autism Spectrum Disorder (ASD) affects about 1 in 100 children resulting in a range of problems in language, communication and understanding other people's emotional cues, all of which can lead to difficulties in social situations. ...

Recommended for you

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

Being bilingual may help autistic children

January 16, 2018
Children with Autism Spectrum Disorders (ASD) often have a hard time switching gears from one task to another. But being bilingual may actually make it a bit easier for them to do so, according to a new study which was recently ...

No rise in autism in US in past three years: study

January 2, 2018
After more than a decade of steady increases in the rate of children diagnosed with autism in the United States, the rate has plateaued in the past three years, researchers said Tuesday.

Autism therapy: Brain stimulation restores social behavior in mice

December 13, 2017
Scientists are examining the feasibility of treating autistic children with neuromodulation after a new study showed social impairments can be corrected by brain stimulation.

Social phobia linked to autism and schizophrenia

December 11, 2017
New Swinburne research shows that people who find social situations difficult tend to have similar brain responses to those with schizophrenia or autism.

Odors that carry social cues seem to affect volunteers on the autism spectrum differently

November 27, 2017
Autism typically involves the inability to read social cues. We most often associate this with visual difficulty in interpreting facial expression, but new research at the Weizmann Institute of Science suggests that the sense ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.