Scientists identify brain circuitry associated with addictive, depressive behaviors

April 30, 2012, University of California, San Francisco

(Medical Xpress) -- Scientists at the UCSF-affiliated Gladstone Institutes have determined how specific circuitry in the brain controls not only body movement, but also motivation and learning, providing new insight into neurodegenerative disorders such as Parkinson’s disease — and psychiatric disorders such as addiction and depression.

Previously, researchers in the laboratory of Gladstone Investigator Anatol Kreitzer, PhD, discovered how an imbalance in the activity of a specific category of brain cells is linked to Parkinson’s.

Now, in a paper published online today in Nature Neuroscience, Kreitzer, who is also an assistant professor of physiology at UCSF, and his team used animal models to demonstrate that this imbalance may also contribute to psychiatric disorders. These findings also help explain the wide range of Parkinson’s symptoms — and mark an important step in finding new treatments for those who suffer from addiction or depression.

“The physical symptoms that affect people with Parkinson’s — including tremors and rigidity of movement — are caused by an imbalance between two types of medium spiny neurons in the brain,” said Kreitzer, whose lab studies how Parkinson’s disease affects brain functions. “In this paper we showed that — specifically addiction and depression —might be caused by this same neural imbalance.”

Normally, two types of medium spiny neurons, or MSNs, coordinate body movements. One type, called direct pathway MSNs (dMSNs), acts like a gas pedal. The other type, known as indirect pathway MSNs (iMSNs), acts as a brake. And while researchers have long known about the link between a chemical in the called dopamine and Parkinson’s, Gladstone researchers recently clarified that dopamine maintains the balance between these two MSN types.

But abnormal dopamine levels are implicated not only in Parkinson’s, but also in addiction and depression. Kreitzer and his team hypothesized that the same circuitry that controlled movement might also control the process of learning to repeat pleasurable experiences and avoid unpleasant ones—and that an imbalance in this process could lead to addictive or depressive behaviors.

Kreitzer and his team genetically modified two sets of mice so that they could control which specific type of MSN was activated. They placed mice one at a time in a box with two triggers — one that delivered a laser pulse to stimulate the neurons and one that did nothing. They then monitored which trigger each mouse preferred.

“The mice that had only dMSNs activated gravitated toward the laser trigger, pushing it again and again to get the stimulation — reminiscent of addictive behavior,” said Alexxai Kravitz, PhD, Gladstone postdoctoral fellow and a lead author of the paper. “But the mice that had only iMSNs activated did the opposite. Unlike their dMSN counterparts, the iMSN mice avoided the laser stimulation, which suggests that they found it unpleasant.” These findings reveal a precise relationship between the two MSN types and how behaviors are learned. They also show how an MSN imbalance can throw normal learning processes out of whack, potentially leading to addictive or depressive behavior.

“People with Parkinson’s disease often show signs of depression before the onset of significant movement problems, so it’s likely that the neural imbalance in Parkinson’s is also responsible for some behavioral changes associated with the disease,” said Kreitzer, who is also an assistant professor of physiology at UCSF.. “Future research could discover how MSNs are activated in those suffering from addiction or depression—and whether tweaking them could reduce their symptoms and improve their quality of life.

Graduate student Lynne Tye was also a lead author on this paper. Funding came from a variety of sources, including the W.M. Keck Foundation, the Pew Biomedical Scholars Program, the McKnight Foundation and the National Institutes of Health.

Gladstone is an independent and nonprofit biomedical-research organization dedicated to accelerating the pace of scientific discovery and innovation to prevent, treat and cure cardiovascular, viral and neurological diseases.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care.

Explore further: Scientists find new target for treating symptoms of Parkinson's disease

Related Stories

Scientists find new target for treating symptoms of Parkinson's disease

September 8, 2011
A scientist at the Gladstone Institutes has identified how the lack of a brain chemical known as dopamine can rewire the interaction between two groups of brain cells and lead to symptoms of Parkinson's disease. This discovery ...

Scientists identify protein that contributes to symptoms of Parkinson's disease

January 25, 2012
Scientists at the Gladstone Institutes, an independent and nonprofit biomedical-research organization, have identified a protein that exacerbates symptoms of Parkinson's disease—a discovery that could one day lead to ...

Reprogramming brain cells important first step for new Parkinson's therapy, study finds

December 13, 2011
(Medical Xpress) -- In efforts to find new treatments for Parkinson’s Disease (PD), researchers from the Perelman School of Medicine at the University of Pennsylvania have directly reprogrammed astrocytes, the most plentiful ...

Recommended for you

Brain zaps may help curb tics of Tourette syndrome

January 16, 2018
Electric zaps can help rewire the brains of Tourette syndrome patients, effectively reducing their uncontrollable vocal and motor tics, a new study shows.

A 'touching sight': How babies' brains process touch builds foundations for learning

January 16, 2018
Touch is the first of the five senses to develop, yet scientists know far less about the baby's brain response to touch than to, say, the sight of mom's face, or the sound of her voice.

Researchers identify protein involved in cocaine addiction

January 16, 2018
Mount Sinai researchers have identified a protein produced by the immune system—granulocyte-colony stimulating factor (G-CSF)—that could be responsible for the development of cocaine addiction.

New study reveals why some people are more creative than others

January 16, 2018
Creativity is often defined as the ability to come up with new and useful ideas. Like intelligence, it can be considered a trait that everyone – not just creative "geniuses" like Picasso and Steve Jobs – possesses in ...

Neuroscientists suggest a model for how we gain volitional control of what we hold in our minds

January 16, 2018
Working memory is a sort of "mental sketchpad" that allows you to accomplish everyday tasks such as calling in your hungry family's takeout order and finding the bathroom you were just told "will be the third door on the ...

Brain imaging predicts language learning in deaf children

January 15, 2018
In a new international collaborative study between The Chinese University of Hong Kong and Ann & Robert H. Lurie Children's Hospital of Chicago, researchers created a machine learning algorithm that uses brain scans to predict ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

kochevnik
not rated yet Apr 30, 2012
Wow the hypothesis about addictions have gone from complex whole-brain conjectures in the 90s now to MSN imbalance. That's the kind of knowledge that will lead to deep understanding and hopefully much more effective treatments. So many people seem to display this type of imbalance, many under special circumstances.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.