New software opens the door to wider use of 3-D imaging in the study of disease

April 16, 2012

Researchers have developed a novel, easy-to-use system for three-dimensional (3D) reconstruction and examination of tissues at microscopic resolution, with the potential to significantly enhance the study of normal and disease processes, particularly those involving structural changes. The new approach, using conventional histopathological methods, is described in the May issue of The American Journal of Pathology.

"The use of 3D imaging technology to study structure, function, and disease manifestations has been limited because of low resolution, and the time and difficulty associated with acquiring large numbers of images with a microscope," says lead investigator Dr. Darren Treanor, University of Leeds and the Leeds Teaching Hospitals NHS Trust, United Kingdom. "Our system can integrate tissue micro-architecture and cellular morphology on large tissue samples. It can be used by technical or medical staff in a histopathology laboratory without input from computing specialists."

Developed by Dr. Derek Magee at the University of Leeds, the system utilizes automated virtual slide scanners to generate high-resolution digital images and produce 3D tissue reconstructions at a cellular resolution level and can be used on any stained tissue section. It is based on a general image based-registration algorithm and operates using an integrated system that requires minimal manual intervention once the slides are sectioned, stained, and mounted. The virtual slide scanners digitize the tissue automatically, the software communicates with the software serving the image, which aligns the images, and produces visualization in one integrated package. The user can manually select a region, zoom in and re-register the area to get a higher resolution image of microscopic features.

The authors have applied the system to over 300 separate 3D volumes from eight different tissue types, using a total of 5,500 virtual slides. They describe cases that illustrate the possible applications of the system. For example, a 3D volume rendering of a mouse embryo demonstrates that the method could be useful for providing anatomical and expression data and for creating a "virtual archive" of 3D transgenic models. A 3D volume rendering of sections from a human liver containing a deposit of metastatic colorectal carcinoma adjacent to a blood vessel could provide insight into tumor vasculature and its response to anti-angiogenic agents. A 3D visualization of cirrhotic human liver infected with hepatitis C demonstrates the software's potential to provide information on disease development and aid diagnosis.

"Many fields, including tumor biology, embryology, and cardiovascular disease could benefit from correlation of structure and function in three dimensions, but getting high quality 3D reconstructions has always been difficult" says Dr. Treanor. "We have demonstrated that our software is accurate and robust enough to use without significant computer science input. This system provides the opportunity for increasing use of 3D histopathology as a routine research tool."

Explore further: 3-D printing technology from CT images may be used effectively for neurosurgical planning

Related Stories

3-D printing technology from CT images may be used effectively for neurosurgical planning

April 29, 2011
3D models, produced by combining a patient's CT scans and 3D printing technology are proving useful in neurosurgical planning.

Recommended for you

Make way for hemoglobin

August 18, 2017
Every cell in the body, whether skin or muscle or brain, starts out as a generic cell that acquires its unique characteristics after undergoing a process of specialization. Nowhere is this process more dramatic than it is ...

Two-step process leads to cell immortalization and cancer

August 17, 2017
A mutation that helps make cells immortal is critical to the development of a tumor, but new research at the University of California, Berkeley suggests that becoming immortal is a more complicated process than originally ...

Female mouse embryos actively remove male reproductive systems

August 17, 2017
A protein called COUP-TFII determines whether a mouse embryo develops a male reproductive tract, according to researchers at the National Institutes of Health and their colleagues at Baylor College of Medicine, Houston. The ...

New Pathology Atlas maps genes in cancer to accelerate progress in personalized medicine

August 17, 2017
A new Pathology Atlas is launched today with an analysis of all human genes in all major cancers showing the consequence of their corresponding protein levels for overall patient survival. The difference in expression patterns ...

New technique overcomes genetic cause of infertility

August 17, 2017
Scientists have created healthy offspring from genetically infertile male mice, offering a potential new approach to tackling a common genetic cause of human infertility.

Inhibiting a protein found to reduce progression of Alzheimer's and ALS in mice

August 17, 2017
(Medical Xpress)—A team of researchers with Genetech Inc. and universities in Hamburg and San Francisco has found that inhibiting the creation of a protein leads to a reduction in the progression of Alzheimer's disease ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.