New genetic method pinpoints geographic origin

May 24, 2012

(Medical Xpress) -- Understanding the genetic diversity within and between populations has important implications for studies of human disease and evolution. This includes identifying associations between genetic variants and disease, detecting genomic regions that have undergone positive selection and highlighting interesting aspects of human population history.

Now, a team of researchers from the UCLA Henry Samueli School of Engineering and Applied Science, UCLA's Department of Ecology and and Israel's Tel Aviv University has developed an innovative approach to the study of called spatial analysis (SPA), which allows for the modeling of genetic variation in two- or three-dimensional space.

Their study is published online this week in the journal Nature Genetics.

With SPA, researchers can model the of each genetic variant by assigning a genetic variant's frequency as a continuous function in geographic space. By doing this, they show that the explicit modeling of the genetic variant frequency — the proportion of individuals who carry a specific variant — allows individuals to be localized on a world map on the basis of their genetic information alone.

"If we know from where each individual in our study originated, what we observe is that some variation is more common in one part of the world and less common in another part of the world," said Eleazar Eskin, an associate professor of computer science at UCLA Engineering. "How common these variants are in a specific location changes gradually as the location changes.

"In this study, we think of the frequency of variation as being defined by a specific location. This gives us a different way to think about populations, which are usually thought of as being discrete. Instead, we think about the variant frequencies changing in different locations. If you think about a person's ancestry, it is no longer about being from a specific population — but instead, each person's ancestry is defined by the location they're from. Now ancestry is a continuum."

The team reports the development of a simple probabilistic model for the spatial structure of genetic variation, with which they model how the frequency of each genetic variant changes as a function of the location of the individual in geographic space (where the gene frequency is actually a function of the x and y coordinates of an individual on a map).

"If the location of an individual is unknown, our model can actually infer geographic origins for each individual using only their genetic data with surprising accuracy," said Wen-Yun Yang, a UCLA computer science graduate student.

"The model makes it possible to infer the geographic ancestry of an individual's parents, even if those parents differ in ancestry. Existing approaches falter when it comes to this task," said UCLA's John Novembre, an assistant professor in the department of ecology and evolution.

SPA is also able to model on a globe.

"We are able to also show how to predict the spatial structure of worldwide populations," said Eskin, who also holds a joint appointment in the department of human genetics at the David Geffen School of Medicine at UCLA. "In just taking genetic information from populations from all over the world, we're able to reconstruct the topology of the global populations only from their genetic information."

Using the framework, SPA can also identify loci showing extreme patterns of spatial differentiation.

"These dramatic changes in the frequency of the variants potentially could be due to natural selection," Eskin said. "It could be that something in the environment is different in different locations. Let's say a mutation arose that has some advantageous property in a certain environment. So you can imagine then that a kind of force for genetic selection would make this mutation more common in that environment."

The research team began to examine all of the genes, and for each gene they computed how sharp of a change there was in the frequencies. They soon discovered that the genes which had the largest and most extreme changes are the ones that are known to have experienced selection in the recent past.

"So this is a new method for finding genes that are also undergoing selection in humans," Yang said.

Funding for the study was provided by the National Science Foundation and the National Institutes of Health.

In addition to Eskin, Yang and Novembre, Eran Halperin, of the school of computer science at Tel Aviv University, was a co-author of the research. The research was completed while all four members of the research team were at UCLA as part of the Institute of Pure and Applied Mathematics (IPAM) program on Mathematical and Computational Approaches in High-Throughput Genomics in fall 2011.

Explore further: Researchers develop complete map of mouse genetic variation

More information: Additional information and access to the SPA software can be found at genetics.cs.ucla.edu/spa/

Research paper online: www.nature.com/ng/journal/vaop … nt/full/ng.2285.html

Related Stories

Researchers develop complete map of mouse genetic variation

September 26, 2011
For decades, laboratory mice have been widely used in research aimed at understanding which genes are involved in various illnesses. But actual variations in past gene sequences of mice were unknown. While researchers were ...

New statistical method could improve search for genes involved in common diseases

May 17, 2011
Recent breakthroughs in the analysis of genetic variation in large populations have led to the discovery of hundreds of genes involved in dozens of common diseases. Many of these discoveries were enabled by performing "meta-analysis," ...

'Rare' genetic variants are surprisingly common, life scientists report

May 18, 2012
(Medical Xpress) -- A large survey of human genetic variation, published today in the online version of the journal Science, shows that rare genetic variants are not so rare after all and offers insights into human diseases.

Life scientists use novel technique to produce genetic map for African Americans

July 23, 2011
UCLA life scientists and colleagues have produced one of the first high-resolution genetic maps for African American populations. A genetic map reveals the precise locations across the genome where DNA from a person's father ...

Recommended for you

The 16 genetic markers that can cut a life story short

July 27, 2017
The answer to how long each of us will live is partly encoded in our genome. Researchers have identified 16 genetic markers associated with a decreased lifespan, including 14 new to science. This is the largest set of markers ...

A rogue gene is causing seizures in babies—here's how scientists wants to stop it

July 26, 2017
Two rare diseases caused by a malfunctioning gene that triggers seizures or involuntary movements in children as early as a few days old have left scientists searching for answers and better treatment options.

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.