Genetically modified T cell therapy shown to be safe, lasting in decade-long study of HIV patients

May 2, 2012, University of Pennsylvania School of Medicine

HIV patients treated with genetically modified T cells remain healthy up to 11 years after initial therapy, researchers from the Perelman School of Medicine at the University of Pennsylvania report in the new issue of Science Translational Medicine. The results provide a framework for the use of this type of gene therapy as a powerful weapon in the treatment of HIV, cancer, and a wide variety of other diseases.

"We have 43 patients and they are all healthy," says senior author Carl June, MD, a professor of Pathology and Laboratory Medicine at Penn Medicine. "And out of those, 41 patients show long term persistence of the modified in their bodies."

Early studies raised concern that to cells via retroviruses might lead to leukemia in a substantial proportion of patients, due to mutations that may arise in genes when new DNA is inserted. The new long-term data, however, allay that concern in T cells, further buoying the hope generated by work June's team published in 2011 showing the eradication of tumors in patients with using a similar strategy.

"If you have a safe way to modify cells in patients with HIV, you can potentially develop curative approaches," June says. "Patients now have to take medicine for their whole lives to keep their virus under control, but there are a number of gene therapy approaches that might be curative." A lifetime of anti-HIV drug therapy, by contrast, is expensive and can be accompanied by significant side effects.

They also note that the approach the Penn Medicine team studied may allow patients with cancers and other diseases to avoid the complications and mortality risks associated with more conventional treatments, since patients treated with the modified T cells did not require drugs to weaken their own immune systems in order for the modified cells to proliferate in their bodies after infusion, as is customary for cancer patients who receive stem .

To demonstrate the long-term safety of genetically modified T cells, June and colleagues have followed HIV-positive patients who enrolled in three trials between 1998 and 2002. Each patient received one or more infusions of their own T cells that had been genetically modified in the laboratory using a retroviral vector. The vector encoded a chimeric antigen receptor that recognizes the HIV envelope protein and directs the modified T cell to kill any HIV-infected cells it encounters.

As is standard for any trial, the researchers carefully monitored patients for any serious adverse events immediately after infusion -- none of which were seen. Additionally, because of the earlier concerns about long-term side effects, the U.S. Food and Drug Administration also asked the team to follow the patients for up to 15 years to ensure that the modified T cells were not causing blood cancers or other late effects. Therefore, each patient underwent an exam and provided blood samples during each of the subsequent years.

Now, with more than 500 years of combined patient safety data, June and colleagues are confident that the retroviral vector system is safe for modifying T cells. By contrast, June notes, the earlier, worrying side effects were seen when viral vectors were used to modify blood stem cells. The new results show that the target cell for gene modification plays an important role in long-term safety for patients treated. "T cells appear to be a safe haven for gene modification," June says.

The multi-year blood samples also show that the gene-modified T cell population persists in the patients' blood for more than a decade. In fact, models suggest that more than half of the T cells or their progeny are still alive 16 years after infusion, which means one treatment might be able to kill off HIV-infected cells for decades. The prolonged safety data means that it might be possible to test T cell-based gene therapy for the treatment of non-life threatening diseases, like arthritis.

"Until now, we've focused on cancer and HIV-infection, but these data provide a rationale for starting to focus on other disease types," June says. "What we have demonstrated in this study and recent studies is that gene transfer to T cells can endow these cells with enhanced and novel functions. We view this as a personalized medicine platform to target disease using a patient's own cells."

Explore further: Gene therapy reduces HIV levels in small trials

Related Stories

Gene therapy reduces HIV levels in small trials

September 20, 2011
(Medical Xpress) -- This weekend at the Interscience Conference on Antimicrobial Agents and Chemotherapy in Chicago, Illinois, researchers from two different study groups, one on the east coast and one on the west coast, ...

Gene-modified stem cells help protect bone marrow from toxic side effects of chemotherapy

May 21, 2011
Although chemotherapy is used to kill cancer cells, it can also have a strong toxic effect on normal cells such as bone marrow and blood cells, often limiting the ability to use and manage the chemotherapy treatment. Researchers ...

Study using stem cell therapy shows promise in fight against HIV

May 2, 2012
UC Davis Health System researchers are a step closer to launching human clinical trials involving the use of an innovative stem cell therapy to fight the virus that causes AIDS.

Recommended for you

HIV exports viral protein in cellular packages

February 15, 2018
HIV may be able to affect cells it can't directly infect by packaging a key protein within the host's cellular mail and sending it out into the body, according to a new study out of a University of North Carolina Lineberger ...

Can gene therapy be harnessed to fight the AIDS virus?

February 13, 2018
For more than a decade, the strongest AIDS drugs could not fully control Matt Chappell's HIV infection. Now his body controls it by itself, and researchers are trying to perfect the gene editing that made this possible.

Big data methods applied to the fitness landscape of the HIV envelope protein

February 7, 2018
Despite significant advances in medicine, there is still no effective vaccine for the human immunodeficiency virus (HIV), although recent hope has emerged through the discovery of antibodies capable of neutralizing diverse ...

Scientists report big improvements in HIV vaccine production

February 5, 2018
Research on HIV over the past decade has led to many promising ideas for vaccines to prevent infection by the AIDS virus, but very few candidate vaccines have been tested in clinical trials. One reason for this is the technical ...

Microbiome research refines HIV risk for women

January 25, 2018
Drawing from data collected for years by AIDS researchers in six African nations, scientists have pinpointed seven bacterial species whose presence in high concentrations may significantly increase the risk of HIV infection ...

Researchers find latent HIV reservoirs inherently resistant to elimination by CD8+ T-cells

January 22, 2018
The latest "kick-and-kill" research to eliminate the HIV virus uncovered a potential obstacle in finding a cure. A recent study by researchers at the George Washington University (GW) found that latent HIV reservoirs show ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.