Helping Hands reaches out to patients with cerebral palsy

May 10, 2012, Rice University
The Dino-Might rehabilitation device invented by students at Rice University is attached to strength gauges that feed data to a computer on which patients play a game while it records their progress. Credit: Jeff Fitlow/Rice University

With the aid of multiple force sensors and a digital dinosaur, a team of Rice University seniors known as Helping Hands hopes to restore strength and flexibility to the hands and wrists of children with cerebral palsy.

"These kids have a real problem with their hands," said Jenna Desmarais, a senior at Rice majoring in . "The fingers and wrists are locked into a sort of claw-like position. Even after surgery to correct it, they need physical therapy to get stronger."

The team's rehabilitation , the Dino-Might, was inspired by their mentor, Gloria Gogola, a pediatric hand and upper-extremity surgeon at Shriners Hospitals for Children in Houston. She corrects the condition, known as spastic wrist flexion deformity, and restores wrist extension by surgically removing a tendon from the underside of the wrist and attaching it to the upper portion.

After surgery, the wrist and its associated muscles and , though straightened, are weak and must be exercised to restore near-normal use. Gogola wanted a rehabilitation device that securely positions the patient's limb, senses and records its strengths and provides a workout for the weakened wrist. Dino-Might prompts the child to appropriately adjust his or her movements with a computer game starring an animated dinosaur.

Jenna Demarais tests the Dino-Might, a rehabilitation device for young patients with cerebral palsy that was invented by a team of senior engineering students at Rice University. Credit: Jeff Fitlow/Rice University

Along with Desmarais, the team consists of bioengineering majors Jessica Joyce and Allison Post and mechanical engineering majors Kurt Kienast, Lawrence Lin and Leslie Miller.

"It's a game, essentially, but one that's connected to eight strength gauges," said Joyce, who devised the software for the device. "By playing the game, the child is telling us how strong she is and how well she can use her wrist and hand. With the game as an incentive, we're learning the patient's strong points, keeping a record of them and making them stronger at the same time."

On the display screen, the patient is given an angular route and is asked to follow it as closely as possible. Using a graphical user interface (GUI) and a data acquisition device, the researchers are able to record results of the patient's movements while the results are being displayed in real time.

A team of Rice University engineering students created the Dino-Might to help children with cerebral palsy rehabilitate their wrists and hands. Credit: Brandon Martin/Rice University

"There have been similar devices in use, but Dr. Gogola hasn't been satisfied with them," Joyce said. "Something, some feature she wants to use, is always missing. What's novel here is the completeness, all in one package – the force sensors, the arm restraint, the stand, the hand restraint, the GUI."

The team has already tested the device on three patients in Gogola's clinic and used the results to recalibrate the sensors.

"Every time the device is used on a new patient, it's adjusted and customized to fit that individual child," Desmarais said. "The information we're giving Dr. Gogola is accurate for that specific patient. The doctor isn't getting a general idea but a precise picture of that boy or girl."

The device might also be adjusted for use by older patients suffering from stroke and spinal cord injuries. Gogola plans to use it this summer on her pediatric and report her findings to the team at Rice.

Explore further: Student engineers automate limb lengthening for kids

Related Stories

Student engineers automate limb lengthening for kids

April 23, 2012
Another day, another four turns of the screw. That's just a part of life for people, primarily children, undergoing the long and difficult process of distraction osteogenesis, a method to correct bone deformities that leave ...

Brain-activated muscle stimulation restores monkeys' hand movement after paralysis

April 18, 2012
An artificial connection between the brain and muscles can restore complex hand movements in monkeys following paralysis, according to a study funded by the National Institutes of Health.

Recommended for you

New long-acting approach for malaria therapy developed

January 22, 2018
A new study, published in Nature Communications, conducted by the University of Liverpool and the Johns Hopkins University School of Medicine highlights a new 'long acting' medicine for the prevention of malaria.

Virus shown to be likely cause of mystery polio-like illness

January 22, 2018
A major review by UNSW researchers has identified strong evidence that a virus called Enterovirus D68 is the cause of a mystery polio-like illness that has paralysed children in the US, Canada and Europe.

Creation of synthetic horsepox virus could lead to more effective smallpox vaccine

January 19, 2018
UAlberta researchers created a new synthetic virus that could lead to the development of a more effective vaccine against smallpox. The discovery demonstrates how techniques based on the use of synthetic DNA can be used to ...

Study ends debate over role of steroids in treating septic shock

January 19, 2018
The results from the largest ever study of septic shock could improve treatment for critically ill patients and save health systems worldwide hundreds of millions of dollars each year.

New approach could help curtail hospitalizations due to influenza infection

January 18, 2018
More than 700,000 Americans were hospitalized due to illnesses associated with the seasonal flu during the 2014-15 flu season, according to federal estimates. A radical new approach to vaccine development at UCLA may help ...

Flu may be spread just by breathing, new study shows; coughing and sneezing not required

January 18, 2018
It is easier to spread the influenza virus (flu) than previously thought, according to a new University of Maryland-led study released today. People commonly believe that they can catch the flu by exposure to droplets from ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.