Scientists identify agent that can block fibrosis of skin, lungs

May 30, 2012

Researchers at the University of Pittsburgh School of Medicine have identified an agent that in lab tests protected the skin and lungs from fibrosis, a process that can ultimately end in organ failure and even death because the damaged tissue becomes scarred and can no longer function properly. The findings were published today in Science Translational Medicine.

There are no effective therapies for life-threatening illnesses such as idiopathic and systemic sclerosis, which cause progressive organ scarring and failure, said senior author Carol A. Feghali-Bostwick, Ph.D., associate professor, Division of Pulmonary, Allergy and Critical Care Medicine, and co-Director of the Scleroderma Center, Pitt School of Medicine.

"It's estimated that contributes to 45 percent of all deaths in developed countries because is the final common pathway for numerous diseases," she said. "Identifying a way to stop this process from happening could have enormous impact on mortality and quality of life."

The research team evaluated E4, a piece of protein or peptide derived from endostatin, a component of collagen known for its inhibition of new . In lab tests, healthy that were treated to become fibrotic remained normal when E4 was present. The skin and lungs of mice were protected from cell death and tissue scarring by a single injection of E4 administered five or eight days after they were given the cancer drug , which is known to induce fibrosis. The peptide also could reverse scarring that had already occurred, the researchers found.

In a unique approach, the investigators also tested E4 in human skin maintained in the laboratory to confirm it would be effective in treating fibrosis in a human tissue. E4 blocked new and ongoing fibrosis in human skin.

The agent might work by stalling the cross-linking of collagen needed to form thick scars, Dr. Feghali-Bostwick said. While the body naturally produces endostatin, it appears that it cannot make sufficient amounts to counteract fibrosis development in some diseases.

"This endostatin peptide passes two important hurdles that suggest it is a promising candidate drug for development for patients with idiopathic pulmonary fibrosis and systemic sclerosis" said Mark T. Gladwin, M.D., chief, Division of Pulmonary, Allergy and at UPMC and Pitt. "It reverses established disease in animal models and it reverses fibrosis in the human skin fibrosis model."

In a case of serendipity, the researchers discovered E4 while exploring the process of fibrosis. Post-doctoral fellow and study co-author Yukie Yamaguchi, M.D., Ph.D., was conducting some experiments with proteins thought to facilitate the scarring process.

"Dr. Yamaguchi showed me the tests that showed endostatin wasn't working to increase fibrosis, but in fact shut it down," Dr. Feghali-Bostwick said. "It was the opposite of what we expected and I was very excited about our finding. As Louis Pasteur once said, 'chance favors the prepared mind.'"

Explore further: Cancer drug may also work for scleroderma

Related Stories

Cancer drug may also work for scleroderma

September 22, 2011
A drug used to treat cancer may also be effective in diseases that cause scarring of the internal organs or skin, such as pulmonary fibrosis or scleroderma.

Stopping cell migration may help block fibrosis and the spread of cancer

May 21, 2012
(Medical Xpress) -- Discoveries by a Yale-led team of scientists could lead the way for development of new therapies for treating fibrosis and tumor metastasis. The researchers have both uncovered a signaling pathway that ...

Cough may warn of danger for patients with lung-scarring disease

October 18, 2011
A new analysis has found that coughing may signal trouble for patients with the lung-scarring disease known as idiopathic pulmonary fibrosis. The study, published in the journal Respirology, found that patients with the condition ...

Progression of lung fibrosis blocked in mouse model

October 5, 2011
A study by researchers at the University of California, San Diego School of Medicine may lead to a way to prevent the progression, or induce the regression, of lung injury that results from use of the anti-cancer chemotherapy ...

Recommended for you

Engineered protein treatment found to reduce obesity in mice, rats and primates

October 19, 2017
(Medical Xpress)—A team of researchers with pharmaceutical company Amgen Inc. report that an engineered version of a protein naturally found in the body caused test mice, rats and cynomolgus monkeys to lose weight. In their ...

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

Cancer drug found to offer promising results in treating sepsis in test mice

October 19, 2017
(Medical Xpress)—A combined team of researchers from China and the U.S. has found that a drug commonly used to treat lung cancer in humans offers a degree of protection against sepsis in test mice. In their paper published ...

Tracing cell death pathway points to drug targets for brain damage, kidney injury, asthma

October 19, 2017
University of Pittsburgh scientists are unlocking the complexities of a recently discovered cell death process that plays a key role in health and disease, and new findings link their discovery to asthma, kidney injury and ...

Study reveals key molecular link in major cell growth pathway

October 19, 2017
A team of scientists led by Whitehead Institute has uncovered a surprising molecular link that connects how cells regulate growth with how they sense and make available the nutrients required for growth. Their work, which ...

Inflammation trains the skin to heal faster

October 18, 2017
Scars may fade, but the skin remembers. New research from The Rockefeller University reveals that wounds or other harmful, inflammation-provoking experiences impart long-lasting memories to stem cells residing in the skin, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.