Zebrafish could hold the key to understanding psychiatric disorders

May 17, 2012

Scientists at Queen Mary, University of London have shown that zebrafish could be used to study the underlying causes of psychiatric disorders.

The study, published online in the journal Behavioural Brain Research, found zebrafish can modify their behaviour in response to varying situations.

Dr Caroline Brennan, from Queen Mary's School of Biological and Chemical Sciences who led the study, said: "Zebrafish are becoming one of the most useful animal models for studying the developmental underlying many psychiatric disorders; they breed prolifically and we have many new and exciting techniques that allow us to explore their genetic make-up in the laboratory."

The scientists took 15 zebrafish through a series of experiments involving colour choice to test aspects of behaviour associated with .

The fish were given a choice between two colours - they learnt to choose one of the colours which gave them food. The colours were then reversed and they learnt to change their colour choice.

The scientists then introduced a new set of colours and started the process again. The fish were able to change their behaviour accordingly, learning the new set of colours much faster than the original set, a process psychologists call 'behavioural flexibility'.

The research challenges previous studies which suggested fish were unable to elicit behavioural flexibility, unlike mammals and humans, because they didn't have a .

"Problems with behavioural flexibility, and general deficits in attention, are key symptoms displayed by people suffering a variety of psychological disorders related to , such as , attention-deficit hyperactivity disorder (ADHD) and some ," Dr Brennan said.

"The results of our study suggest that there may be a role for zebrafish in the future as a useful comparative model to study the cause and prognosis of some of these disorders."

Zebrafish are often used by neuroscientists to explore mechanisms controlling behaviour and in the search for new compounds to treat behavioural disease such as addiction, attention deficit disorders or autism. This study adds further weight to the argument for using zebrafish in the study of these disorders and conditions.

Explore further: Scientists create new genetic model of premature aging diseases

Related Stories

Scientists create new genetic model of premature aging diseases

April 29, 2011
Working with a group of national and international researchers, scientists from the Florida campus of The Scripps Research Institute have developed a new genetic model of premature aging disorders that could shed light on ...

Virtual reality allows researchers to measure brain activity during behavior at unprecedented resolution

May 9, 2012
Researchers have developed a new technique which allows them to measure brain activity in large populations of nerve cells at the resolution of individual cells. The technique, reported today in the journal Nature, has been ...

Recommended for you

Scientists discover powerful potential pain reliever

August 16, 2017
A team of scientists led by chemists Stephen Martin and James Sahn at The University of Texas at Austin have discovered what they say is a powerful pain reliever that acts on a previously unknown pain pathway. The synthetic ...

Researchers discover fundamental pathology behind ALS

August 16, 2017
A team led by scientists at St. Jude Children's Research Hospital and Mayo Clinic has identified a basic biological mechanism that kills neurons in amyotrophic lateral sclerosis (ALS) and in a related genetic disorder, frontotemporal ...

Scientists use magnetic fields to remotely stimulate brain—and control body movements

August 16, 2017
Scientists have used magnetism to activate tiny groups of cells in the brain, inducing bodily movements that include running, rotating and losing control of the extremities—an achievement that could lead to advances in ...

Scientists give star treatment to lesser-known cells crucial for brain development

August 16, 2017
After decades of relative neglect, star-shaped brain cells called astrocytes are finally getting their due. To gather insight into a critical aspect of brain development, a team of scientists examined the maturation of astrocytes ...

The nerve-guiding 'labels' that may one day help re-establish broken nervous connections

August 16, 2017
Scientists have identified a large group of biological 'labels' that guide nerves to ensure they make the correct connections and control different parts of the body. Although their research was conducted with fruit flies, ...

Navigation and spatial memory—new brain region identified to be involved

August 16, 2017
Navigation in mammals including humans and rodents depends on specialized neural networks that encode the animal's location and trajectory in the environment, serving essentially as a GPS, findings that led to the 2014 Nobel ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.