Zebrafish could hold the key to understanding psychiatric disorders

May 17, 2012

Scientists at Queen Mary, University of London have shown that zebrafish could be used to study the underlying causes of psychiatric disorders.

The study, published online in the journal Behavioural Brain Research, found zebrafish can modify their behaviour in response to varying situations.

Dr Caroline Brennan, from Queen Mary's School of Biological and Chemical Sciences who led the study, said: "Zebrafish are becoming one of the most useful animal models for studying the developmental underlying many psychiatric disorders; they breed prolifically and we have many new and exciting techniques that allow us to explore their genetic make-up in the laboratory."

The scientists took 15 zebrafish through a series of experiments involving colour choice to test aspects of behaviour associated with .

The fish were given a choice between two colours - they learnt to choose one of the colours which gave them food. The colours were then reversed and they learnt to change their colour choice.

The scientists then introduced a new set of colours and started the process again. The fish were able to change their behaviour accordingly, learning the new set of colours much faster than the original set, a process psychologists call 'behavioural flexibility'.

The research challenges previous studies which suggested fish were unable to elicit behavioural flexibility, unlike mammals and humans, because they didn't have a .

"Problems with behavioural flexibility, and general deficits in attention, are key symptoms displayed by people suffering a variety of psychological disorders related to , such as , attention-deficit hyperactivity disorder (ADHD) and some ," Dr Brennan said.

"The results of our study suggest that there may be a role for zebrafish in the future as a useful comparative model to study the cause and prognosis of some of these disorders."

Zebrafish are often used by neuroscientists to explore mechanisms controlling behaviour and in the search for new compounds to treat behavioural disease such as addiction, attention deficit disorders or autism. This study adds further weight to the argument for using zebrafish in the study of these disorders and conditions.

Explore further: Scientists create new genetic model of premature aging diseases

Related Stories

Scientists create new genetic model of premature aging diseases

April 29, 2011
Working with a group of national and international researchers, scientists from the Florida campus of The Scripps Research Institute have developed a new genetic model of premature aging disorders that could shed light on ...

Virtual reality allows researchers to measure brain activity during behavior at unprecedented resolution

May 9, 2012
Researchers have developed a new technique which allows them to measure brain activity in large populations of nerve cells at the resolution of individual cells. The technique, reported today in the journal Nature, has been ...

Recommended for you

New map may lead to drug development for complex brain disorders, researcher says

July 24, 2017
Just as parents are not the root of all their children's problems, a single gene mutation can't be blamed for complex brain disorders like autism, according to a Keck School of Medicine of USC neuroscientist.

Working around spinal injuries: Rehabilitation, drug treatment lets rats recover some involuntary movement

July 24, 2017
A new study in rats shows that changes in the brain after spinal cord injury are necessary to restore at least some function to lower limbs. The work was published recently in the journal eLife.

Bird songs provide insight into how developing brain forms memories

July 24, 2017
Researchers at the University of Chicago have demonstrated, for the first time, that a key protein complex in the brain is linked to the ability of young animals to learn behavioral patterns from adults.

Scientists capture first image of major brain receptor in action

July 24, 2017
Columbia University Medical Center (CUMC) researchers have captured the first three-dimensional snapshots of the AMPA-subtype glutamate receptor in action. The receptor, which regulates most electrical signaling in the brain, ...

Research identifies new brain death pathway in Alzheimer's disease

July 24, 2017
Alzheimer's disease tragically ravages the brains, memories and ultimately, personalities of its victims. Now affecting 5 million Americans, Alzheimer's disease is the sixth leading cause of death in the U.S., and a cure ...

Illuminating neural pathways in the living brain

July 24, 2017
Using light alone, scientists from the Max Planck Institute of Neurobiology in Martinsried are now able to reveal pairs or chains of functionally connected neurons under the microscope. The new optogenetic method, named Optobow, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.