Scientists create new genetic model of premature aging diseases

April 29, 2011

Working with a group of national and international researchers, scientists from the Florida campus of The Scripps Research Institute have developed a new genetic model of premature aging disorders that could shed light on these rare conditions in humans and provide a novel platform for large-scale screening of compounds to combat these and other age-related diseases.

In the new study, which was published this month in the open-access publication PLoS ONE, the scientists found a way to use zebrafish (Danio rerio) to model two rare human genetic disorders: Hutchinson-Gilford Progeria Syndrome and laminopathies.

"This is a robust model system of human aging that corresponds directly to the human genes involved in these diseases," said Scripps Florida Assistant Professor Shuji Kishi, who led the study. "This model is ready now and can be used to screen and develop to treat these and other age-related diseases."

Kishi noted that zebrafish, which display an array of signs of aging resembling those in humans, have emerged over the past decade as a powerful system to study diseases associated with aging and development.

Hutchinson-Gilford Progeria Syndrome is a rare disease that causes symptoms of advanced aging such as cardiovascular problems, hair loss, and distressed skin in young children. The laminopathies are a cluster of at least 13 different genetic disorders, whose symptoms range from muscular dystrophy to . They are grouped together because they are all caused by mutations in the genes that encode proteins of the , the double-hulled envelope that surrounds the .

The gene associated with both progeria and laminopathies is the lamin A gene (LMNA), which presumably is also involved in the normal process of human aging, although the underlying mechanisms of the process are still relatively unknown.

In the new research, scientists set out to block the of the LMNA gene in zebrafish. This resulted in apoptosis or programmed cell death, as well as interruption of the normal cell cycle. Deletion of some specific amino acid residues in the lamin A protein also produced aging in embryonic zebrafish.

Intriguingly, the study also found that farnestyl transferase inhibitor (FTI), a new class of anti-cancer drugs, reduced abnormalities in the nuclear membrane and prevented significant aging in the embryonic zebrafish models, which survived to adulthood but with a shortened lifespan.

"Utilizing our 'embryonic senescence' zebrafish model, our next goal will be to find modifier as well as chemical compounds to reverse accelerated aging and restore the normal aging process," Kishi said. "These findings could contribute to healthy aging in normal individuals, because the moderate defects of lamin A are also associated with the normal aging process."

More information: "Embryonic Senescence and Laminopathies in a Progeroid Zebrafish Model," www.plosone.org/article/info%3 … journal.pone.0017688

Related Stories

Recommended for you

The 16 genetic markers that can cut a life story short

July 27, 2017
The answer to how long each of us will live is partly encoded in our genome. Researchers have identified 16 genetic markers associated with a decreased lifespan, including 14 new to science. This is the largest set of markers ...

A rogue gene is causing seizures in babies—here's how scientists wants to stop it

July 26, 2017
Two rare diseases caused by a malfunctioning gene that triggers seizures or involuntary movements in children as early as a few days old have left scientists searching for answers and better treatment options.

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.