Scientists create new genetic model of premature aging diseases

April 29, 2011, The Scripps Research Institute

Working with a group of national and international researchers, scientists from the Florida campus of The Scripps Research Institute have developed a new genetic model of premature aging disorders that could shed light on these rare conditions in humans and provide a novel platform for large-scale screening of compounds to combat these and other age-related diseases.

In the new study, which was published this month in the open-access publication PLoS ONE, the scientists found a way to use zebrafish (Danio rerio) to model two rare human genetic disorders: Hutchinson-Gilford Progeria Syndrome and laminopathies.

"This is a robust model system of human aging that corresponds directly to the human genes involved in these diseases," said Scripps Florida Assistant Professor Shuji Kishi, who led the study. "This model is ready now and can be used to screen and develop to treat these and other age-related diseases."

Kishi noted that zebrafish, which display an array of signs of aging resembling those in humans, have emerged over the past decade as a powerful system to study diseases associated with aging and development.

Hutchinson-Gilford Progeria Syndrome is a rare disease that causes symptoms of advanced aging such as cardiovascular problems, hair loss, and distressed skin in young children. The laminopathies are a cluster of at least 13 different genetic disorders, whose symptoms range from muscular dystrophy to . They are grouped together because they are all caused by mutations in the genes that encode proteins of the , the double-hulled envelope that surrounds the .

The gene associated with both progeria and laminopathies is the lamin A gene (LMNA), which presumably is also involved in the normal process of human aging, although the underlying mechanisms of the process are still relatively unknown.

In the new research, scientists set out to block the of the LMNA gene in zebrafish. This resulted in apoptosis or programmed cell death, as well as interruption of the normal cell cycle. Deletion of some specific amino acid residues in the lamin A protein also produced aging in embryonic zebrafish.

Intriguingly, the study also found that farnestyl transferase inhibitor (FTI), a new class of anti-cancer drugs, reduced abnormalities in the nuclear membrane and prevented significant aging in the embryonic zebrafish models, which survived to adulthood but with a shortened lifespan.

"Utilizing our 'embryonic senescence' zebrafish model, our next goal will be to find modifier as well as chemical compounds to reverse accelerated aging and restore the normal aging process," Kishi said. "These findings could contribute to healthy aging in normal individuals, because the moderate defects of lamin A are also associated with the normal aging process."

More information: "Embryonic Senescence and Laminopathies in a Progeroid Zebrafish Model," www.plosone.org/article/info%3 … journal.pone.0017688

Related Stories

Recommended for you

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

Study advances gene therapy for glaucoma

January 16, 2018
While testing genes to treat glaucoma by reducing pressure inside the eye, University of Wisconsin-Madison scientists stumbled onto a problem: They had trouble getting efficient gene delivery to the cells that act like drains ...

The surprising role of gene architecture in cell fate decisions

January 16, 2018
Scientists read the code of life—the genome—as a sequence of letters, but now researchers have also started exploring its three-dimensional organisation. In a paper published in Nature Genetics, an interdisciplinary research ...

How incurable mitochondrial diseases strike previously unaffected families

January 15, 2018
Researchers have shown for the first time how children can inherit a severe - potentially fatal - mitochondrial disease from a healthy mother. The study, led by researchers from the MRC Mitochondrial Biology Unit at the University ...

Genes that aid spinal cord healing in lamprey also present in humans

January 15, 2018
Many of the genes involved in natural repair of the injured spinal cord of the lamprey are also active in the repair of the peripheral nervous system in mammals, according to a study by a collaborative group of scientists ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.