Alzheimer's infects from neuron to neuron

June 26, 2012
Two nerve cells, each about 10 micrometers large, are visible as shadows in this picture. From the beginning only the right one (yellow arrow) contained the toxic, red stained, oligomeric beta-amyloid. When these sick cells make contacts with the healthy, green labeled cells (black arrow), toxic beta-amyloid will spread through the neuronal projections (white arrow). Subsequently, also the green cell will become sick. Credit: Martin Hallbeck

The inexorable spread of Alzheimer's disease through the brain leaves dead neurons and forgotten thoughts in its wake. Researchers at Linköping University in Sweden are the first to show how toxic proteins are transferred from neuron to neuron.

Through experiments on stained neurons, the research team – under the leadership of Martin Hallbeck, associate professor of Pathology – has been able to depict the process of neurons being invaded by diseased proteins that are then passed on to nearby cells.

"The spread of Alzheimer's, which can be studied in the brains of diseased patients, always follows the same pattern. But until now how and why this happens has not been understood," says Hallbeck, who along with his research group has now published their results in The Journal of Neuroscience.

The illness starts in the entorhinal cortex – a part of the cerebral cortex, and then spreads to the hippocampus. Both of these areas are important for memory. Gradually, pathological changes take place in more and more areas of the brain, while the patient becomes even sicker.

Two proteins have been identified in connection with Alzheimer's: beta amyloid and tau. Normally tau is found in the axons – the outgrowths that connect between neurons – where it has a stabilising function, while beta amyloid seems to have a role in the synapses where the neurons transfer signal substances to each other. But in Alzheimer's patients, something happens with these proteins; autopsies reveal abnormal accumulations of both.

Why they become abnormal is still unknown, but what is known is that it's not the large accumulations, or plaques, that damage the neurons. Instead, smaller groups of beta amyloid – called oligomeres – seem to be the toxic form that gradually destroy the neurons and shrink the brain.

"We wanted to investigate whether these oligomeres can spread from neuron to neuron, something many researchers tried earlier but didn't succeed," Hallbeck says.

The study was inaugurated with an experiment on neuron cultures, where researchers injected oligomeres stained with a phosphorescent red substance called TMR using a very thin needle. The next day the neighbouring, connected neurons were also red, which showed that the oligomeres had spread.

To test whether a sick neuron can "infect" others, they conducted a round of experiments with mature human stained green and mixed with others that were red after having taken up stained oligomeres. After a day, approximately half of the green cells had been in contact with a few of the red ones. After two more days, the axons had lost their shape and organelles in the cell nucleus had started to leak.

"Gradually more and more of the green cells became sick. Those that hadn't taken up the oligomeres, on the other hand, weren't affected," Hallbeck says.

The study is a breakthrough in understanding Alzheimer's and its progress. If a way of stopping the transfer can be found, it could lead to a more effective inhibitor against the disease.

Explore further: Study shows Alzheimer's disease may spread by 'jumping' from one brain region to another

More information: Spreading of neurodegenerative pathology via neuron-to-neuron transmission of beta-amyloid by Sangeeta Nath, Lotta Agholme, Firoz Kurudenkandy, Björn Granseth, Jan Marcusson and Martin Hallbeck. The Journal of Neuroscience, 27 June 2012.

Related Stories

Study shows Alzheimer's disease may spread by 'jumping' from one brain region to another

February 1, 2012
For decades, researchers have debated whether Alzheimer's disease starts independently in vulnerable brain regions at different times, or if it begins in one region and then spreads to neuroanatomically connected areas. A ...

Single-neuron observations mark steps in Alzheimer's disease

April 20, 2012
Studying a mouse model of Alzheimer's disease, neuroscientists at the Technische Universitaet Muenchen have observed correlations between increases in both soluble and plaque-forming beta-amyloid – a protein implicated ...

Scientists gain new understanding of Alzheimer's trigger

May 2, 2012
A highly toxic beta-amyloid – a protein that exists in the brains of Alzheimer's disease victims – has been found to greatly increase the toxicity of other more common and less toxic beta-amyloids, serving as a ...

New findings contradict dominant theory in Alzheimer's disease

October 28, 2011
For decades the amyloid hypothesis has dominated the research field in Alzheimer's disease. The theory describes how an increase in secreted beta-amyloid peptides leads to the formation of plaques, toxic clusters of damaged ...

Recommended for you

Hunger-controlling brain cells may offer path for new obesity drugs

July 28, 2017
Is the solution to the obesity epidemic all in our heads? A study by researchers at The Rockefeller University suggests that it might be.

Faster-acting antidepressants may finally be within reach

July 28, 2017
Some activity patterns in the brain can be dangerous, producing persistent dark moods that drain people's motivation, pleasure, and hope. For the past thirty years, pills like Prozac or Zoloft—collectively known as selective ...

New surgical strategy offers hope for repairing spinal injuries

July 28, 2017
Scientists in the UK and Sweden previously developed a new surgical technique to reconnect sensory neurons to the spinal cord after traumatic spinal injuries. Now, they have gained new insight into how the technique works ...

In witnessing the brain's 'aha!' moment, scientists shed light on biology of consciousness

July 27, 2017
Columbia scientists have identified the brain's 'aha!' moment—that flash in time when you suddenly become aware of information, such as knowing the answer to a difficult question. Today's findings in humans, combined with ...

Scientists block evolution's molecular nerve pruning in rodents

July 27, 2017
Researchers investigating why some people suffer from motor disabilities report they may have dialed back evolution's clock a few ticks by blocking molecular pruning of sophisticated brain-to-limb nerve connections in maturing ...

Social influences can override aggression in male mice, study shows

July 27, 2017
Stanford University School of Medicine investigators have identified a cluster of nerve cells in the male mouse's brain that, when activated, triggers territorial rage in a variety of situations. Activating the same cluster ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.