Bioluminescence imaging lights up stem cell therapy for hair growth

June 11, 2012

Finding a way to restore hair growth after substantial hair loss is something of an obsession worldwide. Investigators at the Society of Nuclear Medicine's 2012 Annual Meeting presented how stem cell research for the development of new hair follicles can be monitored with an optical imaging technique that uses bioluminescence, the same process that allows fireflies to light up.

There is a host of treatments available for hair loss, including creams and drugs, but these have not shown to be very effective for . Hair signal the actual regeneration of hair follicles and natural hair. A technique called bioluminescence is used to display processes at the . Bioluminescent signal is generated in specific called substrates. These signals are easily recognized with very sensitive optical imaging systems that can see what is happening in the smallest places—in this case in hair stem cells.

"Hair regeneration using hair stem cells is a promising therapeutic option emerging for hair loss, and molecular imaging can speed up the development of this therapy," saysByeong-Cheol Ahn, M.D., Ph.D., professor and director of the department of nuclear medicine at Kyungpook National University School of Medicine and Hospital in Daegu, South Korea. "This study is the first study of hair follicle regeneration using an in vivo molecular imaging technique."

The current research involves grafting hair stem cells in animal models to investigate if they can grow and proliferate as normal cells do. The progress of hair stem cell therapy is non-invasivelytracked with bioluminescentreporter genes in specialized substrates. There are several bioluminescent reporter genes originating fromnot only , but also beetles, glowworms and other bioluminescent organisms. The strategy of using bioluminescent reporter genesis ideal for , because bioluminescence works only in living cells.

In this study, researchers used bioluminescence imaging usingfirefly luciferase coupled with D-luciferin to monitor the engraftment of hair follicle stem cells—called newborn fibroblasts—in mice to track their viability and development into hair folliclesover time. Bioluminescence imaging was performed five times over the course of 21 days after transplantation of the stem cells.

Results of the study showed successful bioluminescence imaging forhair regeneration with hair stem cell transplantation, and new hair follicles were apparent on the surface of skin samples under microscope. More studies will have to be conducted before clinical trials could be initiated to verify whether this therapy would work for human hair regeneration.

Explore further: New research provides clues on why hair turns gray

Related Stories

New research provides clues on why hair turns gray

June 14, 2011
A new study by researchers at NYU Langone Medical Center has shown that, for the first time, Wnt signaling, already known to control many biological processes, between hair follicles and melanocyte stem cells can dictate ...

Japan study raises hopes of cure for baldness

April 18, 2012
Japanese researchers have successfully grown hair on hairless mice by implanting follicles created from stem cells, they announced Wednesday, sparking new hopes of a cure for baldness.

Recommended for you

Inflammation trains the skin to heal faster

October 18, 2017
Scars may fade, but the skin remembers. New research from The Rockefeller University reveals that wounds or other harmful, inflammation-provoking experiences impart long-lasting memories to stem cells residing in the skin, ...

Large variety of microbial communities found to live along female reproductive tract

October 18, 2017
(Medical Xpress)—A large team of researchers from China (and one each from Norway and Denmark) has found that the female reproductive tract is host to a far richer microbial community than has been thought. In their paper ...

Study of what makes cells resistant to radiation could improve cancer treatments

October 18, 2017
A Johns Hopkins University biologist is part of a research team that has demonstrated a way to size up a cell's resistance to radiation, a step that could eventually help improve cancer treatments.

New approach helps rodents with spinal cord injury breathe on their own

October 17, 2017
One of the most severe consequences of spinal cord injury in the neck is losing the ability to control the diaphragm and breathe on one's own. Now, investigators show for the first time in laboratory models that two different ...

Pair of discoveries illuminate new paths to flu and anthrax treatments

October 17, 2017
Two recent studies led by biologists at the University of California San Diego have set the research groundwork for new avenues to treat influenza and anthrax poisoning.

New method to measure how drugs interact

October 17, 2017
Cancer, HIV and tuberculosis are among the many serious diseases that are frequently treated with combinations of three or more drugs, over months or even years. Developing the most effective therapies for such diseases requires ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.