Speeding up bone growth by manipulating stem cells

June 25, 2012 By Steven Powell, University of South Carolina
Qian Wang at work among plants that host some of the building blocks of his nanomolecular scaffolds.

If you break a bone, you know you'll end up in a cast for weeks. But what if the time it took to heal a break could be cut in half? Or cut to just a tenth of the time it takes now? Qian Wang, a chemistry professor at the University of South Carolina, has made tantalizing progress toward that goal.

Wang, Andrew Lee and co-workers just reported in Molecular Pharmaceutics that surfaces coated with bionanoparticles could greatly accelerate the early phases of . Their coatings, based in part on genetically modified Tobacco , reduced the amount of time it took to convert stem cells into bone nodules – from two weeks to just two days.

The key to hastening bone healing or growth is to coax a perfectly natural process to pick up the pace.

"If you break a rib, or a finger, the healing is automatic," said Wang. "You need to get the bones aligned to be sure it works as well as possible, but then nature takes over."

Healing is indeed very natural. The human body continuously generates and circulates cells that are undifferentiated; that is, they can be converted into the components of a range of tissues, such as skin or muscle or bone, depending on what the body needs.

The conversion of these cells – called stem cells – is set into motion by external cues. In bone healing, the body senses the break at the cellular level and begins converting stem cells into new bone cells at the location of the break, bonding the fracture back into a single unit. The process is very slow, which is helpful in allowing a fracture to be properly set, but after that point the wait is at least an inconvenience, and in some cases highly detrimental.

"With a broken femur, a leg, you can be really incapacitated for a long time," said Wang. "In cases like that, they sometimes inject a protein-based drug, BMP-2, which is very effective in speeding up the healing process. Unfortunately, it's very expensive and can also have some side effects."

In a search for alternatives four years ago, Wang and colleagues uncovered some unexpected accelerants of bone growth: plant viruses. They originally meant for these viruses, which are harmless to humans, to work as controls. They coated glass surfaces with uniform coverings of the Turnip yellow mosaic virus and Tobacco mosaic virus, originally intending to use them as starting points for examining other potential variations.

But they were surprised to find that the coatings alone could reduce the amount of time to grow bone nodules from stem cells. Since then, Wang and co-workers have refined their approach to better define just what it is that accelerates bone growth.

Over the course of the past four years, they've demonstrated that it's a combination of the chemistry as well as the topography of the surface that determines how long it takes a stem cell to form bone nodules. The stem cells are nestled into a nanotopgraphy defined by the plant virus, and within that nanotopography the cells make contact with the variety of chemical groups on the viral surface.

Wang and his team are now asserting control over these variables. In the most recent effort spearheaded by Lee, they built up a layer-by-layer assembly underneath the virus coating to ensure stability. They also genetically modified the viral protein to enhance the interaction between the coating and the stem cells and help drive them toward bone growth.

Their efforts were rewarded with bone nodules that formed just two days after the addition of stem cells, compared to two weeks with a standard glass surface. They're also carefully following the cellular signs involved with success. BMP-2 is involved, but as an intrinsic cellular product rather than an added drug.

"BMP-2 is bone morphogenetic protein 2. It can be added as a protein-based drug, but it's a natural protein produced in the cell," said Wang. "We see upregulation of the BMP-2 within 8 hours with the new scaffold." They also find osteocalcin expression and calcium sequestration, two processes associated with bone formation, to be much more pronounced with their new coatings.

"What we've seen could prove very useful, particularly when it comes to external implants in bones," said Wang. "With those, you have to add a foreign material, and knowing that a coating might increase the bone growth process is clearly beneficial."

"But more importantly, we feel we're making progress in a more general sense in bone engineering. We're really showing the direct correlation between nanotopography and cellular response. If our results can be further developed, in the future you could use titanium to replace the bone, and you might be able to use different kinds of nanoscale patterning on the titanium surface to create all kinds of different cellular responses."

Chuanbin Mao, a professor in the department of chemistry and biochemistry at the University of Oklahoma who was not involved in the work, wrote in an e-mail that he was "amazed and excited" by the results. "The display of peptides on viruses, including Tobacco mosaic virus, is a powerful approach for studying how engineered virus particles can direct stem cell differentiation."

"The discovery that the display of a cell adhesion peptide on can enable the rapid differentiation of into bone-forming cells is very important for guiding scientists in designing a scaffold that can induce rapid bone formation in regenerative medicine."

Explore further: Stem cell treatment may offer option for broken bones that don't heal

More information: Mol. Pharmaceutics, Article ASAP DOI: 10.1021/mp300042t

Related Stories

Stem cell treatment may offer option for broken bones that don't heal

June 5, 2011
Researchers at the University of North Carolina at Chapel Hill School of Medicine have shown in an animal study that transplantation of adult stem cells enriched with a bone-regenerating hormone can help mend bone fractures ...

Smart materials that get bone to heal

November 4, 2011
Bone tissue is very good at self-healing, but in many situations the natural healing process is not sufficient. In a dissertation at Uppsala University, Sonya Piskounova shows how functional materials that she and her colleagues ...

A better way to grow bone: Fresh, purified fat stem cells grow bone faster and better

June 11, 2012
UCLA stem cell scientists purified a subset of stem cells found in fat tissue and made from them bone that was formed faster and was of higher quality than bone grown using traditional methods, a finding that may one day ...

Recommended for you

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.