Control of brain waves from the brain surface

June 15, 2012, CORDIS
Control of brain waves from the brain surface
Credit: Thinkstock

Whether or not a neuron transmits an electrical impulse is a function of many factors. European research is using a heady mixture of techniques – molecular, microscopy and electrophysiological – to identify the necessary input for nerve transmission in the cortex.

In the central nervous system (CNS), a nerve cell or neuron has a 'forest' of elaborate dendritic trees arising from the cell body. These literally receive many thousands of synapses (junctions that allow transmission of a signal) at positions around the tree. These inputs then are able to generate an impulse, or 'spike', known as an action potential at the initial part of the axon.

Previous research has confirmed that an activated synapse will generate an electric signal as a result of neurotransmitters released from pre-synaptic axons. Electrical recordings from the neocortex have confirmed that, in line with the cable theory prediction, that modulation of potential at the dendrite is highly distance-dependent from the cell body or soma.

The 'Information processing in distal dendrites of neocortical layer 5 pyramidal neurons' (Channelrhodopsin) project aimed to shed more light on how more distal sites in the 'tree' influence the action potential of the post-synaptic neuron. Furthermore, they investigated exactly how dendritic spikes can be generated, another issue about which there is little information so far.

Recent research has highlighted the importance of activation of N-methyl-D-aspartate (NMDA) receptors to bring about the production of a signal that will proceed to the soma and then result in a spike. There is also indirect evidence that interneurons targeting dendrites can control level of dendrite excitability.

Channelrhodopsin scientists simultaneously recorded the pre- and post-synaptic electrical recordings of identified interneurons and a special type of neuron, pyramidal cells that are primary excitation units in the mammalian cortex.

The project team first characterised the different types of inhibitory neuron deep in the cortex in layer 5 at apical tuft dendrites. The researchers then showed that a special type of inhibitory interneuron in the outer layer of the neocortex can suppress dendritic spiking in layer 5.

Project results show that a superficial inhibitory neuron can impact information processing in a specific pyramidal neuron. The research will have massive implications for neuroscience and help to unravel the integrative operations of CNS .

Explore further: A 3-D reconstructed image of neural dendritic trees using the advanced electron microscope technology

Related Stories

A 3-D reconstructed image of neural dendritic trees using the advanced electron microscope technology

September 13, 2011
Neurons in the brain play a role as an electric wire conveying an electrical signal. Because this electric wire is connected with various joints (synapse), various brain functions can occur. A neuron which has dendritic trees ...

Recommended for you

Wiring diagram of the brain provides a clearer picture of brain scan data

December 14, 2018
Already affecting more than five million Americans older than 65, Alzheimer's disease is on the rise and expected to impact more than 13 million people by 2050. Over the last three decades, researchers have relied on neuroimaging—brain ...

Scientists identify method to study resilience to pain

December 14, 2018
Scientists at the Yale School of Medicine and Veterans Affairs Connecticut Healthcare System have successfully demonstrated that it is possible to pinpoint genes that contribute to inter-individual differences in pain.

Parents' brain activity 'echoes' their infant's brain activity when they play together

December 13, 2018
When infants are playing with objects, their early attempts to pay attention to things are accompanied by bursts of high-frequency activity in their brain. But what happens when parents play together with them? New research, ...

In the developing brain, scientists find roots of neuropsychiatric diseases

December 13, 2018
The most comprehensive genomic analysis of the human brain ever undertaken has revealed new insights into the changes it undergoes through development, how it varies among individuals, and the roots of neuropsychiatric illnesses ...

Researchers discover abundant source for neuronal cells

December 13, 2018
USC researchers seeking a way to study genetic activity associated with psychiatric disorders have discovered an abundant source of human cells—the nose.

Researchers find the cause of and cure for brain injury associated with gut condition

December 13, 2018
Using a mouse model of necrotizing enterocolitis (NEC)—a potentially fatal condition that causes a premature infant's gut to suddenly die—researchers at Johns Hopkins say they have uncovered the molecular causes of the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.