Study explains functional links between autism and genes

June 21, 2012, Cell Press

A pioneering report of genome-wide gene expression in autism spectrum disorders (ASDs) finds genetic changes that help explain why one person has an ASD and another does not. The study, published by Cell Press on June 21 in The American Journal of Human Genetics, pinpoints ASD risk factors by comparing changes in gene expression with DNA mutation data in the same individuals. This innovative approach is likely to pave the way for future personalized medicine, not just for ASD but also for any disease with a genetic component.

ASDs are a heterogeneous group of developmental conditions characterized by social deficits, difficulty communicating, and repetitive behaviors. ASDs are thought to be highly heritable, meaning that they run in families. However, the genetics of autism are complex.

Researchers have found rare changes in the number of copies of defined genetic regions that associate with ASD. Although there are some hot-spot regions containing these alterations, very few genetic changes are exactly alike. Similarly, no two autistic people share the exact same symptoms. To discover how these genetic changes might affect and, thus, the presentation of the disorder, Rui Luo, a graduate student in the Geschwind lab at UCLA, studied 244 families in which one child (the proband) was affected with an ASD and one was not.

In addition to identifying several potential new regions where copy-number variants () are associated with ASDs, Geschwind's team found genes within these regions to be significantly misregulated in ASD children compared with their unaffected siblings. "Strikingly, we observed a higher incidence of haploinsufficient genes in the rare CNVs in probands than in those of siblings, strongly indicating a functional impact of these CNVs on expression," says Geschwind. Haploinsuffiency occurs when only one copy of a gene is functional; the result is that the body cannot produce a normal amount of protein. The researchers also found a significant enrichment of misexpressed genes in neural-related pathways in ASD children. Previous research has found that these pathways include other genetic variants associated with autism, which Geschwind explains further legitimizes the present findings.

Explore further: Further support for a role of synaptic proteins in autism spectrum disorders

More information: Luo et al.: "Genome-wide Transcriptome Profiling Reveals the Functional Impact of Rare De Novo and Recurrent CNVs in Autism Spectrum Disorders." DOI 10.1016/j.ajhg.2012.05.011

Related Stories

Further support for a role of synaptic proteins in autism spectrum disorders

February 9, 2012
A new study combines genetic and neurobiological approaches to confirm that synaptic mutations increase the risk of autism spectrum disorders (ASDs). It also highlights a role for modifier genes in these disorders. Published ...

18 novel subtype-dependent genetic variants for autism spectrum disorders revealed

April 27, 2011
By dividing individuals with autism spectrum disorders (ASD) into four subtypes according to similarity of symptoms and reanalyzing existing genome-wide genetic data on these individuals vs. controls, researchers at the George ...

Study shows delays in siblings of children with autism spectrum disorders

May 16, 2012
A new University of Miami (UM) study shows that one in three children who have an older sibling with an Autism Related Disorder (ASD) fall into a group characterized by higher levels of autism-related behaviors or lower levels ...

Study finds new ADHD genes, links susceptibility with autism and other neuropsychiatric conditions

August 10, 2011
New research led by The Hospital for Sick Children (SickKids) and the University of Toronto has identified more genes in attention deficit hyperactivity disorder (ADHD) and shows that there is an overlap between some of these ...

Recommended for you

Two new breast cancer genes emerge from Lynch syndrome gene study

January 18, 2018
Researchers at Columbia University Irving Medical Center and NewYork-Presbyterian have identified two new breast cancer genes. Having one of the genes—MSH6 and PMS2—approximately doubles a woman's risk of developing breast ...

Can mice really mirror humans when it comes to cancer?

January 18, 2018
A new Michigan State University study is helping to answer a pressing question among scientists of just how close mice are to people when it comes to researching cancer.

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.