Intestinal bacteria produce neurotransmitter, could play role in inflammation

June 17, 2012

Researchers at Baylor College of Medicine and Texas Children's Hospital have identified commensal bacteria in the human intestine that produce a neurotransmitter that may play a role in preventing or treating inflammatory bowel diseases such as Crohn's disease.

"We identified, to our knowledge, the first bifidobacterial strain, Bifidobacterium dentium, that is capable of secreting large amounts of gamma-aminobutyric acid (GABA). This molecule is a major in the central and enteric nervous systems," says Karina Pokusaeva, a researcher on the study and a member of the laboratory of James Versalovic.

GABA is one of the chief inhibitory neurotransmitters in the human . It plays a role in regulating pain and some pain relieving drugs currently on the market act by targeting GABA receptors on .

Pokusaeva and her colleagues were interested in understanding the role the human microbiome might play in pain and scanned the genomes of potentially beneficial intestinal microorganisms, identified by the Human Microbiome Project, for evidence of a gene that would allow them to create GABA.

"Lab analysis of metagenomic DNA sequencing data allowed us to demonstrate that microbial glutamate decarboxylase encoding gene is very abundant in intestinal as compared to other body sites," says Pokusaeva. One of the most prolific producers of GABA was B. dentium, which appears to secrete the compound to help it survive the acid environment.

In addition to its pain modulating properties, GABA may also be capable of inhibiting inflammation. Recent studies have shown that immune cells called macrophages also possess GABA receptors. When these receptors were activated on the macrophages there was a decrease in the production of compounds responsible for inflammation.

"Our lab was curious to explore if GABA produced by intestinal human isolate B. dentium could have an effect on GABA receptors present in immune cells," says Pokusaeva. Together with their collaborators Dr. Yamada and Dr. Lacorazza they found that when the cells were exposed to secretions from the bacteria, they exhibited increased expression of the GABAA receptor in the .

While the findings are preliminary, they suggest the possibility that B. dentium and the compounds it secretes could play a role in reducing inflammation associated with inflammatory bowel diseases.

The next step, says Pokusaeva is to conduct in vitro experiments to determine if the increased GABAA expression correlates with a decrease in production of cytokines associated with inflammation. GABAA receptor signaling may also contribute to pain signaling in the gut and may somehow be involved in abdominal pain disorders.

"Our preliminary findings suggest that Bifidobacterium dentium could potentially have an inhibitory role in inflammation; however more research has to be performed to further prove our hypothesis," says Pokusaeva.

Explore further: Conducting how neurons fire

More information: This research was presented as part of the 2012 General Meeting of the American Society for Microbiology held June 16-19, 2012 in San Francisco, California.

Related Stories

Conducting how neurons fire

November 25, 2011
Contrary to expectations that the neurotransmitter GABA only inhibited neuronal firing in the adult brain, RIKEN-led research has shown that it can also excite interneurons in the hippocampus of the rat brain by changing ...

Early research shows dietary supplement may lower risk of developing type 2 diabetes

September 22, 2011
UCLA researchers demonstrated that an over-the-counter dietary supplement may help inhibit development of insulin resistance and glucose intolerance, conditions that are involved in the development of Type 2 diabetes and ...

GABA deficits disturb endocannabinoid system

January 24, 2012
Changes in the endocannabinoid system may have important implications for psychiatric and addiction disorders. This brain system is responsible for making substances that have effects on brain function which resemble those ...

Modulation of inhibitory output is key function of antiobesity hormone

July 13, 2011
Scientists have known for some time that the hormone leptin acts in the brain to prevent obesity, but the specific underlying neurocircuitry has remained a mystery. Now, new research published by Cell Press in the July 14 ...

Recommended for you

New compound discovered in fight against inflammatory disease

September 22, 2017
A 10-year study by University of Manchester scientists for a new chemical compound that is able to block a key component in inflammatory illness has ended in success.

Asthma researchers test substance from coralberry leaves

September 14, 2017
The coralberry could offer new hope for asthmatics. Researchers at the University of Bonn have extracted an active pharmaceutical ingredient from its leaves to combat asthma, a widespread respiratory disease. In mice, it ...

Respiratory experts urge rethink of 'outdated' asthma categorisation

September 12, 2017
A group of respiratory medicine experts have called for an overhaul of how asthma and other airways diseases are categorised and treated.

New 'biologic' drug may help severe asthma

September 7, 2017
(HealthDay)—A "biologic" drug in development to treat severe asthma reduces the rate of serious attacks by about two-thirds compared to a placebo drug, according to preliminary research findings.

Songbird study shows how estrogen may stop infection-induced brain inflammation

August 31, 2017
The chemical best-known as a female reproductive hormone—estrogen—could help fight off neurodegenerative conditions and diseases in the future. Now, new research by American University neuroscience Professor Colin Saldanha ...

New insights into protein's role in inflammatory response

July 28, 2017
A protein called POP2 inhibits a key inflammatory pathway, calming the body's inflammatory response before it can become destructive, Northwestern Medicine scientists have demonstrated in mouse models.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.