Mature liver cells may be better than stem cells for liver cell transplantation therapy

June 4, 2012, Cell Transplantation Center of Excellence for Aging and Brain Repair

After carrying out a study comparing the repopulation efficiency of immature hepatic stem/progenitor cells and mature hepatocytes transplanted into liver-injured rats, a research team from Sapporo, Japan concluded that mature hepatocytes offered better repopulation efficiency than stem/progenitor cells.

Until day 14 post-transplantation, the growth of the stem/progenitor cells was faster than the mature hepatocytes, but after two weeks most of the stem/progenitor cells had died. However, the mature hepatocytes continued to survive and proliferate one year after their implantation.

The study is published in (21:1), now freely available on-line at http://www.ingentaconnect.com/content/cog/ct/.

"Cell-based therapies as an alternative to to treat have shown promise," said study corresponding author Dr. Toshihiro Mitaka of the Cancer Research Institute of the Sapporo Medical University School of Medicine, Sapporo, Japan. "However, the repopulation efficiency of two candidate cell sources - hepatic progenitor/stem cells and mature hepatocytes - had not been comprehensively assessed and questions concerning the efficiency of each needed to be resolved."

The researchers noted that the shortage of cell sources and the difficulties of have limited the of cell based therapies. Stem or progenitor cells have been considered candidate cells because they can expand in vitro and can be cryopreserved for a long time.

However, after transplantation into liver injured rats, the researchers found that stem/progenitor cells did not survive well and most of the transplanted cells had disappeared within two months. In contrast, the mature hepatocytes gradually repopulated the rat livers and continued doing so past one year.

The researchers noted that the sizes of the hepatocytes were not uniform.

"Unexpectedly, the small hepatocytes repopulated significantly less well than the larger ones," explained Dr. Mitaka. "We also found that serial transplantation did not enhance nor diminish the repopulation capacity of the cells to any significant degree."

The researchers concluded that because the stem/progenitor cells had died much earlier than the mature hepatocytes, most were immediately excluded from the host livers, reducing their potential impact on liver generation.

"Further experiments are required to clarify the mechanism by which this might occur," concluded the authors.

"This study suggests that mature hepatocytes may be a better treatment option than " said Dr. Stephen Strom of the Karolinska Institute, Sweden and section editor for Cell Transplantation. "However, determining the factors that allow for the survival and continued growth of the stem/progenitor and mature hepatocytes could be relevant for future improvements of hepatocyte transplantation in the clinic".

Explore further: Restoring what's lost: Uncovering how liver tissue regenerates

More information: Ichinohe, N.; Kon, J.; Sasaki, K.; Nakamura, Y.; Ooe H.; Tanimizu, N.; Mitaka, T. Growth ability and repopulation efficiency of transplanted hepatic stem cells, progenitor cells, and mature hepatocytes in retrorsine-treated rat livers. Cell Transplant. 21(1):11-22; 2012.

Related Stories

Restoring what's lost: Uncovering how liver tissue regenerates

March 12, 2012
The liver is unique among mammalian organs in its ability to regenerate after significant tissue damage or even partial surgical removal.

Recommended for you

Anemia discovery offers new targets to treat fatigue in millions

January 22, 2018
A new discovery from the University of Virginia School of Medicine has revealed an unknown clockwork mechanism within the body that controls the creation of oxygen-carrying red blood cells. The finding sheds light on iron-restricted ...

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.