Mature liver cells may be better than stem cells for liver cell transplantation therapy

June 4, 2012

After carrying out a study comparing the repopulation efficiency of immature hepatic stem/progenitor cells and mature hepatocytes transplanted into liver-injured rats, a research team from Sapporo, Japan concluded that mature hepatocytes offered better repopulation efficiency than stem/progenitor cells.

Until day 14 post-transplantation, the growth of the stem/progenitor cells was faster than the mature hepatocytes, but after two weeks most of the stem/progenitor cells had died. However, the mature hepatocytes continued to survive and proliferate one year after their implantation.

The study is published in (21:1), now freely available on-line at http://www.ingentaconnect.com/content/cog/ct/.

"Cell-based therapies as an alternative to to treat have shown promise," said study corresponding author Dr. Toshihiro Mitaka of the Cancer Research Institute of the Sapporo Medical University School of Medicine, Sapporo, Japan. "However, the repopulation efficiency of two candidate cell sources - hepatic progenitor/stem cells and mature hepatocytes - had not been comprehensively assessed and questions concerning the efficiency of each needed to be resolved."

The researchers noted that the shortage of cell sources and the difficulties of have limited the of cell based therapies. Stem or progenitor cells have been considered candidate cells because they can expand in vitro and can be cryopreserved for a long time.

However, after transplantation into liver injured rats, the researchers found that stem/progenitor cells did not survive well and most of the transplanted cells had disappeared within two months. In contrast, the mature hepatocytes gradually repopulated the rat livers and continued doing so past one year.

The researchers noted that the sizes of the hepatocytes were not uniform.

"Unexpectedly, the small hepatocytes repopulated significantly less well than the larger ones," explained Dr. Mitaka. "We also found that serial transplantation did not enhance nor diminish the repopulation capacity of the cells to any significant degree."

The researchers concluded that because the stem/progenitor cells had died much earlier than the mature hepatocytes, most were immediately excluded from the host livers, reducing their potential impact on liver generation.

"Further experiments are required to clarify the mechanism by which this might occur," concluded the authors.

"This study suggests that mature hepatocytes may be a better treatment option than " said Dr. Stephen Strom of the Karolinska Institute, Sweden and section editor for Cell Transplantation. "However, determining the factors that allow for the survival and continued growth of the stem/progenitor and mature hepatocytes could be relevant for future improvements of hepatocyte transplantation in the clinic".

Explore further: Restoring what's lost: Uncovering how liver tissue regenerates

More information: Ichinohe, N.; Kon, J.; Sasaki, K.; Nakamura, Y.; Ooe H.; Tanimizu, N.; Mitaka, T. Growth ability and repopulation efficiency of transplanted hepatic stem cells, progenitor cells, and mature hepatocytes in retrorsine-treated rat livers. Cell Transplant. 21(1):11-22; 2012.

Related Stories

Restoring what's lost: Uncovering how liver tissue regenerates

March 12, 2012
The liver is unique among mammalian organs in its ability to regenerate after significant tissue damage or even partial surgical removal.

Recommended for you

Image ordering often based on factors other than patient need: study

September 25, 2017
Do you really need that MRI?

Bone marrow concentrate improves joint transplants

September 25, 2017
Biologic joint restoration using donor tissue instead of traditional metal and plastic may be an option for active patients with joint defects. Although recovery from a biologic joint repair is typically longer than traditional ...

Researchers describe mechanism that underlies age-associated bone loss

September 22, 2017
A major health problem in older people is age-associated osteoporosis—the thinning of bone and the loss of bone density that increases the risk of fractures. Often this is accompanied by an increase in fat cells in the ...

Researchers develop treatment to reduce rate of cleft palate relapse complication

September 22, 2017
Young people with cleft palate may one day face fewer painful surgeries and spend less time undergoing uncomfortable orthodontic treatments thanks to a new therapy developed by researchers from the UCLA School of Dentistry. ...

Exosomes are the missing link to insulin resistance in diabetes

September 21, 2017
Chronic tissue inflammation resulting from obesity is an underlying cause of insulin resistance and type 2 diabetes. But the mechanism by which this occurs has remained cloaked, until now.

Thousands of new microbial communities identified in human body

September 20, 2017
A new study of the human microbiome—the trillions of microbial organisms that live on and within our bodies—has analyzed thousands of new measurements of microbial communities from the gut, skin, mouth, and vaginal microbiome, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.