Methods developed to enable large-scale analysis of malaria parasite genomes from patient blood samples

June 13, 2012
Blood test to track emergence of drug resistance in malaria parasites
Malaria parasites are spread by mosquitoes.

Researchers have developed a new technique to identify hotspots of malaria parasite evolution and track the rise of malarial drug resistance, faster and more efficiently than ever before.

For the first time, researchers have the ability to analyse genomes straight from patient blood samples using new and informatics methods. As a proof of principle, the team conducted the first analysis of clinical samples from six countries and uncovered unique differences in malaria development in Africa, Asia and Oceania. This study is published in Nature on the 13 June 2012.

Severe forms of are caused by the parasite , which is spread by mosquitoes. Malaria infects over 200 million people and kills approximately 600,000 people every year, primarily children under the age of five in sub-Saharan Africa.

"One of the most striking features of P. falciparum is its ability to evolve, and overcome anti-malarial drugs. Chloroquine has become ineffective against malaria, and resistance to the other frontline drugs is emerging," says senior author of the study Professor Dominic Kwiatkowski, of the Wellcome Trust Sanger Institute and Oxford University. "If we want to control resistance, we first need to be able to monitor the genetic diversity of P. falciparum and identify hotspots of potential resistance as they occur. Rapid sequencing of parasite genomes from the blood of infected people is a powerful way of detecting changes in the parasite population, and potentially an important new in the armamentarium for controlling malaria."

The team developed a new technique to extract the parasite DNA directly from blood removing as much human DNA from the sample as possible. The new method overcomes the need to grow the parasite in a blood culture before sequencing, speeding the process and minimising replication errors.

P. falciparum genomes are particularly difficult to sequence because, unlike , large parts of the DNA sequence are repeated. As a result, the reconstruction of whole parasite genome DNA sequences is slow, expensive and error-prone using current DNA sequencing methods. To avoid these problems, the team used sequence data to create a list of single DNA letter changes, known as SNPs, which can be reliably identified in the gene-rich areas of the genome. These SNPs allow the discovery and measurement of variability in natural parasite populations.

"We catalogued approximately 86,000 SNPs in the parasite genome that allow us to pinpoint differences between around the world, a starting point for understanding how these populations adapt to changes in their environment." says Dr Magnus Manske, co-first author from the Sanger Institute.

Dr Olivo Miotto from the Sanger Institute and Oxford University, also a co-first author, adds: "Many malaria patients, especially in Africa, are continually infected by malaria parasites, and we have created a new tool for studying the within a single patient, and compare it to the diversity in their environment."

The team used these techniques to analyse samples from Burkina Faso, Cambodia, Kenya, Mali, Papua New Guinea and Thailand. They found that a single infected person could harbour many genetically different malarial parasites, allowing the parasite populations to swap DNA to create new forms. Hence, the pace of parasite evolution is drastically affected by human factors, as well as geography.

Samples taken from people in the neighbouring African countries of Burkina Faso and Mali, where there are very high levels of malaria transmission, showed strong intermingling of P. falciparum genomes.

In stark contrast, Asian P. falciparum parasites collected on the Thai-Burmese border were not only different from those in Africa, but also distinct from those found near the Thai border with Cambodia. This lack of intermingling could be the result of effective malaria control in Thailand, combined with a history of restricted travel of people between Thailand and Cambodia.

"The emergence and spread of anti-malarial is a major threat to current global initiatives to control and eliminate malaria" says Professor Nick White of Oxford University and Mahidol University, Thailand. "This research provides fundamental insights into the population structure and evolution of Plasmodium falciparum that are essential if we are to identify, map, and then contain spreading resistance. Working as a global community, we can now build on this technique to identify hotspots of antimalarial drug resistance around the world and contain them effectively."

Explore further: Study finds early signs of malaria drug resistance in Africa

More information: Magnus Manske, Olivo Miotto et al (2012) Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing. Nature, DOI: 10.1038/nature11174

Related Stories

Study finds early signs of malaria drug resistance in Africa

April 27, 2012
Africa's deadliest malaria parasite has shown resistance in lab tests to one of the most powerful drugs on the market -- a warning of possible resistance to follow in patients, scientists said Friday.

Contrasting patterns of malaria drug resistance found between humans and mosquitoes

November 15, 2011
A study conducted by researchers at the Johns Hopkins Malaria Research Institute and their Zambian colleagues detected contrasting patterns of drug resistance in malaria-causing parasites taken from both humans and mosquitoes ...

Recommended for you

Hibernating ground squirrels provide clues to new stroke treatments

November 17, 2017
In the fight against brain damage caused by stroke, researchers have turned to an unlikely source of inspiration: hibernating ground squirrels.

Age and gut bacteria contribute to multiple sclerosis disease progression

November 17, 2017
Researchers at Rutgers Robert Wood Johnson Medical School published a study suggesting that gut bacteria at young age can contribute to multiple sclerosis (MS) disease onset and progression.

Molecular guardian defends cells, organs against excess cholesterol

November 16, 2017
A team of researchers at the Harvard T. H. Chan School of Public Health has illuminated a critical player in cholesterol metabolism that acts as a molecular guardian in cells to help maintain cholesterol levels within a safe, ...

Prototype ear plug sensor could improve monitoring of vital signs

November 16, 2017
Scientists have developed a sensor that fits in the ear, with the aim of monitoring the heart, brain and lungs functions for health and fitness.

Ancient enzyme could boost power of liquid biopsies to detect and profile cancers

November 16, 2017
Scientists are developing a set of medical tests called liquid biopsies that can rapidly detect the presence of cancers, infectious diseases and other conditions from only a small blood sample. Researchers at The University ...

FDA to crack down on risky stem cell offerings

November 16, 2017
U.S. health authorities announced plans Thursday to crack down on doctors pushing stem cell procedures that pose the gravest risks to patients amid an effort to police a burgeoning medical field that previously has received ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.