New mouse model helps explain gene discovery in congenital heart disease

June 26, 2012, Nationwide Children's Hospital

Scientists now have clues to how a gene mutation discovered in families affected with congenital heart disease leads to underdevelopment of the walls that separate the heart into four chambers. A Nationwide Children's Hospital study appearing in PLoS Genetics suggests that abnormal development of heart cells during embryogenesis may be to blame.

When babies are born with a hole in their heart (either between the upper or lower chambers), they have a septal defect, the most common form of . Although it's not clear what causes all septal defects, genetic studies primarily utilizing large families have led to the discovery of several .

Vidu Garg, MD, the study's lead author, previously reported that a single nucleotide change in the GATA4 gene in humans causes atrial and ventricular septal defects along with pulmonary valve stenosis. In mice, the GATA4 gene has been shown to be necessary for normal heart development and its deletion leads to abnormal heart development.

"While GATA4 has been shown to be important for several critical processes during early heart formation, the mechanism for the heart malformations found in humans with the mutation we previously reported is not well understood," said Dr. Garg, a pediatric cardiologist in The Heart Center and principal investigator in the Center for Cardiovascular and Pulmonary Research at The Research Institute at Nationwide Children's Hospital.

To better characterize the mutation, Dr. Garg and colleagues generated a mouse model harboring the same human disease-causing mutation. They saw heart abnormalities in the mice that were consistent with those seen in humans with GATA4 mutations. Upon further examination, they found that the mutant protein leads to functional deficits in the ability for to increase in number during embryonic development.

"Our findings suggest that cardiomyocyte proliferation deficits could be a mechanism for the septal defects seen in this mouse model and may contribute to septal defects in humans with mutations in GATA4," said Dr. Garg, also a faculty member at The Ohio State University College of Medicine. "This mouse model will be valuable in studying how septation and heart valve defects arise and serve as a useful tool to study the impact of environmental factors on GATA4 functions during ."

Explore further: Study identifies second gene associated with specific congenital heart defects

Related Stories

Study identifies second gene associated with specific congenital heart defects

April 29, 2011
A gene known to be important in cardiac development has been newly associated with congenital heart malformations that result in obstruction of the left ventricular outflow tract. These are the findings from a study conducted ...

Recommended for you

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

Two new breast cancer genes emerge from Lynch syndrome gene study

January 18, 2018
Researchers at Columbia University Irving Medical Center and NewYork-Presbyterian have identified two new breast cancer genes. Having one of the genes—MSH6 and PMS2—approximately doubles a woman's risk of developing breast ...

Can mice really mirror humans when it comes to cancer?

January 18, 2018
A new Michigan State University study is helping to answer a pressing question among scientists of just how close mice are to people when it comes to researching cancer.

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.