Researchers review muscular dystrophy therapies

June 22, 2012
Dean Burkin, associate professor of pharmacology at the University of Nevada School of Medicine in Reno is working to develop a therapy for muscular dystrophy. He has co-authored a paper published this week in Science Translational Medicine that examines the potential MG53 protein therapy for Duchenne muscular dystrophy. Credit: Photo courtesy of University of Nevada, Reno

Leading muscular dystrophy researcher Dean Burkin, of the University of Nevada School of Medicine summarizes the impact of a new protein therapeutic, MG53, for the treatment of Duchenne muscular dystrophy in an article published this week in Science Translational Medicine.

"This is a focus article in which we summarize the impact of MG53 protein therapy as a and discuss the increasing number of new protein therapeutics being developed for the muscular dystrophies, including laminin-111 developed in our laboratory," Burkin, a pharmacological researcher and associate professor, said.

The article, "A Molecular Bandage for Diseased Muscle," co-authored by Ryan Wuebbles, a post-doctoral student in Burkin's lab in the University's Center for , is a review of the current status of therapeutic developments in the muscular dystrophy research field. These therapies represent significant strides and show great promise in treatment of muscular dystrophy.

Approaches to treat Duchenne muscular dystrophy include gene replacement therapy, gene repair and myoblast cell transfer.

In a study on MG53 by Noah Weislander and colleagues, presented in the same issue of Science Translational Medicine, it was found that mice that lack MG53 developed and exhibit defective after exercise or injury, and that MG53 facilitates rapid membrane repair to prevent damage to normal muscle.

The study suggests that treatment in combination with other protein therapies such as Burkin's laminin-111 therapy, are likely to have synergy as well for Duchenne and other muscular dystrophies.

Burkin's published research on laminin-111, a naturally occurring protein, showed it is quickly picked up in the bloodstream of mice and prevents , an important finding for Duchenne muscular dystrophy, the most common form of muscular dystrophy.

He recently co-hosted Myomatrix 2012, a conference for leading muscular dystrophy scientists and clinicians to explore and share their latest findings and data on treatment breakthroughs. The conference was held at the University of Nevada, Reno campus, where research by Burkin has led to a potential new therapy for muscular dystrophy.

Explore further: MG53 protein shown to be useful for treating traumatic tissue damage

More information: The article by Burkin and Wuebbles can be found at stm.sciencemag.org/content/4/139/139fs19.full

Burkin's work, which is funded by the National Institutes of Health, has also been featured on the website ScienCentral (www.sciencentral.com/video/2009/04/20/muscular-dystrophy-drug/). His work was published in the Proceedings of the National Academy of Sciences as well as the January 2009 edition of American Journal of Pathology.

Related Stories

MG53 protein shown to be useful for treating traumatic tissue damage

June 21, 2012
Throughout the lifecycle, injury to the body’s cells occurs naturally, as well as through trauma. Cells have the ability to repair and regenerate themselves, but a defect in the repair process can lead to cardiovascular, ...

Stem cell foundation for muscular dystrophy treatment

July 14, 2011
Research at the Australian Regenerative Medicine Institute (ARMI) at Monash University could lay the groundwork for new muscular dystrophy treatments.

Recommended for you

Inhibiting a protein found to reduce progression of Alzheimer's and ALS in mice

August 17, 2017
(Medical Xpress)—A team of researchers with Genetech Inc. and universities in Hamburg and San Francisco has found that inhibiting the creation of a protein leads to a reduction in the progression of Alzheimer's disease ...

Are stem cells the link between bacteria and cancer?

August 17, 2017
Gastric carcinoma is one of the most common causes of cancer-related deaths, primarily because most patients present at an advanced stage of the disease. The main cause of this cancer is the bacterium Helicobacter pylori, ...

Using barcodes to trace cell development

August 16, 2017
How do the multiple different cell types in the blood develop? Scientists have been pursuing this question for a long time. According to the classical model, different developmental lines branch out like in a tree. The tree ...

The unexpected role of a well-known gene in creating blood

August 16, 2017
One of the first organ systems to form and function in the embryo is the cardiovascular system: in fact, this developmental process starts so early that scientists still have many unresolved questions on the origin of the ...

Researchers unlock clues to how cells move through the body

August 16, 2017
During its 120-day cycle the circulatory system transports red blood cells and nutrients throughout the human body. This system helps keep the body in balance and fight against infections and diseases by filtering old or ...

Eating habits affect skin's protection against sun

August 15, 2017
Sunbathers may want to avoid midnight snacks before catching some rays.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.