New therapy substitutes missing protein in those with muscular dystrophy

May 26, 2009,

Researchers at the University of Minnesota Medical School have discovered a new therapy that shows potential to treat people with Duchenne muscular dystrophy, a fatal disease and the most common form of muscular dystrophy in children.

In the , researchers were able to substitute for the missing protein - dystrophin, which forms a key part of the framework that holds together - that results in the disease, effectively repairing weakened muscle tissue.

Researchers injected dystrophic mice with a protein called utrophin - a very close relative of dystrophin - that was modified with a cell-penetrating tag, called TAT.

The study is the first to establish the efficacy and feasibility of the TAT-utrophin-based protein as a viable therapy for the treatment of as well as diseases caused by loss of dystrophin.

The research is published in the May 26, 2009 issue of PLoS Medicine.

"This unique approach can replace the missing protein without the complexities of gene replacement or stem cell approaches," said James Ervasti, Ph.D., principal investigator of the study and a professor in the Department of Biochemistry, & Biophysics.

Muscular dystrophy causes the muscles in the body to progressively weaken. Duchenne is the most common and severe form of childhood muscular dystrophy. About one of 3,500 boys are born with the crippling disease. Symptoms usually begin in children who are 2 to 3 years-old, most are in a wheelchair by age 12, and many who have the disease pass away by their late teens to early 20s. Current treatment, limited to corticosteroids, are minimally effective and can cause serious side effects.

Research underway to battle muscular dystrophy with gene therapy and stem cell treatment shows promise, but major hurdles must be overcome before these approaches are viable in human patients, Ervasti said.

Delivering treatment to every muscle cell via gene therapy or is difficult because muscle tissue makes up such a large portion of the human body. Furthermore, the immune system may reject the cell or gene treatment because patients would treat the newly introduced cells or genes as a foreign substance.

Ervasti's method may conquer both of those problems. Upon injection, the TAT-utrophin combination spreads around the entire body efficiently and is able to penetrate the muscle cell wall to substitute for missing dystrophin. Because every cell in the body makes utrophin naturally, TAT-utrophin circumvents immunity issues associated with other therapeutic approaches.

"Our replacement approach most directly and simply addresses the cause of Duchenne muscular dystrophy," Ervasti said.

This new method is not a cure for muscular dystrophy. Rather, it would be a therapy most likely administered on a regular basis. If the treatment works in larger animal models and humans, it's most likely researchers would develop a drug for patients. Ervasti is hopeful the therapy can move into human clinical trials within 3 years.

Source: University of Minnesota (news : web)

Related Stories

Recommended for you

Breakthrough article on mechanistic features of microRNA targeting and activity

March 23, 2018
Giovanna Brancati and Helge Grosshans from the FMI have described target specialization of miRNAs of the let-7 family. They identified target site features that determine specificity, and revealed that specificity can be ...

Calorie restriction trial in humans suggests benefits for age-related disease

March 22, 2018
One of the first studies to explore the effects of calorie restriction on humans showed that cutting caloric intake by 15% for 2 years slowed aging and metabolism and protected against age-related disease. The study, which ...

Boosting enzyme may help improve blood flow, fitness in elderly

March 22, 2018
As people age, their blood-vessel density and blood flow decrease, which is why it's harder to maintain muscle mass after 40 and endurance in the later decades, even with exercise. This vascular decline is also one of the ...

Scientists pinpoint cause of vascular aging in mice

March 22, 2018
We are as old as our arteries, the adage goes, so could reversing the aging of blood vessels hold the key to restoring youthful vitality?

Sulfur amino acid restriction diet triggers new blood vessel formation in mice

March 22, 2018
Putting mice on a diet containing low amounts of the essential amino acid methionine triggered the formation of new blood vessels in skeletal muscle, according to a new study from Harvard T.H. Chan School of Public Health. ...

Cold can activate body's 'good' fat at a cellular level, study finds

March 21, 2018
Lower temperatures can activate the body's 'good' fat formation at a cellular level, a new study led by academics at The University of Nottingham has found.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.