Musical study challenges long-held view of left brain-right brain split

June 4, 2012, Neuroscience Research Australia

(Medical Xpress) -- Ever been stuck in traffic when a feel-good song comes on the radio and suddenly your mood lightens?

Our emotions and are typically associated with the right side of the . For example, processing the emotion in human facial expressions is done in the right .

However, new Australian research is challenging the widely-held view that emotions and feelings are the domain of the right hemisphere only.

Dr. Sharpley Hsieh and colleagues from Neuroscience Research (NeuRA) found that people with , a disease where parts of the are severely affected, have difficulty recognising emotion in music.

These findings have exciting implications for our understanding of how music, language and emotions are handled by the brain.

“It’s known that processing whether a face is happy or sad is impaired in people who lose key regions of the right hemisphere, as happens in people with Alzheimer’s and semantic dementia”, says Dr. Hsieh.

“What we have now learnt from looking at people with semantic dementia is that understanding emotions in music involves key parts of the other side of the brain as well”, she says.

“Ours is the first study from patients with dementia to show that language-based areas of the brain, primarily on the left, are important for extracting meaning from music. Our findings suggest that the brain considers melodies and speech to be similar and that overlapping parts of the brain are required for both”, says Hsieh.

This paper is published in the journal Neuropsychologia.

How was this study done?

• People with Alzheimer’s disease lose episodic memory (‘What did I do yesterday?’); people with semantic dementia lose semantic memory (‘What is a zebra?’).
• Dr. Hsieh studied people with Alzheimer’s disease, semantic dementia and healthy people without either disease. Participants were played new pieces of music and had to indicate whether the song was happy, sad, peaceful or scary.
• Images were then taken of the patients’ brains using MRI so that diseased parts of the brain could be compared statistically to the answers provided in the musical test.
• Patients with Alzheimer’s and semantic dementia have problems deciding whether a human face looks happy or sad because the amygdala in the right hemisphere is diseased.
• Patients with semantic have additional problems labelling whether a piece of music is happy or sad because the anterior temporal lobe in the left hemisphere is diseased.

Explore further: Recognition of anger, fear, disgust most affected in dementia

Related Stories

Recognition of anger, fear, disgust most affected in dementia

October 4, 2011
(Medical Xpress) -- A new study on emotion recognition has shown that people with frontotemporal dementia are more likely to lose the ability to recognise negative emotions, such as anger, fear and disgust, than positive ...

Dementia patients reveal how we construct a picture of the future

May 23, 2012
(Medical Xpress) -- Our ability to imagine and plan our future depends on brain regions that store general knowledge, new research shows.

Men have a stronger reaction to seeing other men's emotions compared with women's

December 7, 2011
(Medical Xpress) -- Men have a stronger response to seeing other men show emotion than when women show emotion, according to new research from Queen Mary, University of London.

Brain cells created from patients' skin cells

February 7, 2012
(Medical Xpress) -- Cambridge scientists have, for the first time, created cerebral cortex cells – those that make up the brain’s grey matter – from a small sample of human skin.  The researchers’ ...

Recommended for you

Research shows signalling mechanism in the brain shapes social aggression

October 19, 2018
Duke-NUS researchers have discovered that a growth factor protein, called brain-derived neurotrophic factor (BDNF), and its receptor, tropomyosin receptor kinase B (TrkB) affects social dominance in mice. The research has ...

Good spatial memory? You're likely to be good at identifying smells too

October 19, 2018
People who have better spatial memory are also better at identifying odors, according to a study published this week in Nature Communications. The study builds on a recent theory that the main reason that a sense of smell ...

How clutch molecules enable neuron migration

October 19, 2018
The brain can discriminate over 1 trillion odors. Once entering the nose, odor-related molecules activate olfactory neurons. Neuron signals first accumulate at the olfactory bulb before being passed on to activate the appropriate ...

Scientists discover the region of the brain that registers excitement over a preferred food option

October 19, 2018
At holiday buffets and potlucks, people make quick calculations about which dishes to try and how much to take of each. Johns Hopkins University neuroscientists have found a brain region that appears to be strongly connected ...

Gene plays critical role in noise-induced deafness

October 19, 2018
In experiments using mice, a team of UC San Francisco researchers has discovered a gene that plays an essential role in noise-induced deafness. Remarkably, by administering an experimental chemical—identified in a separate ...

Brain cells called astrocytes have unexpected role in brain 'plasticity'

October 18, 2018
When we're born, our brains have a great deal of flexibility. Having this flexibility to grow and change gives the immature brain the ability to adapt to new experiences and organize its interconnecting web of neural circuits. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.