Noninvasive brain stimulation shown to impact walking patterns

June 1, 2012

In a step towards improving rehabilitation for patients with walking impairments, researchers from the Kennedy Krieger Institute found that non-invasive stimulation of the cerebellum, an area of the brain known to be essential in adaptive learning, helped healthy individuals learn a new walking pattern more rapidly. The findings suggest that cerebellar transcranial direct current stimulation (tDCS) may be a valuable therapy tool to aid people relearning how to walk following a stroke or other brain injury.

Previous studies in the lab of Amy Bastian, PhD, PT, director of the Motion Analysis Laboratory at Kennedy Krieger Institute, have shown that the , a part of the brain involved in movement coordination, is essential for walking adaptation. In this new study, Dr. Bastian and her colleagues explored the impact of stimulation over the cerebellum on adaptive learning of a new walking pattern. Specifically, her team tested how anode (positive), cathode (negative) or sham (none) stimulation affected this learning process.

"We've known that the cerebellum is essential to adaptive learning mechanisms like reaching, walking, balance and ," says Dr. Bastian. "In this study, we wanted to examine the effects of direct stimulation of the cerebellum on locomotor learning utilizing a split-belt treadmill that separately controls the legs."

The study, published today in the , found that by placing on the scalp over the cerebellum and applying very low levels of current, the rate of walking adaptation could be increased or decreased. Dr. Bastian's team studied 53 healthy adults in a series of split-belt treadmill walking tests. Rather than a single belt, a split-belt treadmill consists of two belts that can move at different speeds. During split-belt walking, one leg is set to move faster than the other. This initially disrupts coordination between the legs so the user is not walking symmetrically, however over time the user learns to adapt to the disturbance.

The main experiment consisted of a two-minute baseline period of walking with both belts at the same slow speed, followed by a 15-minute period with the belts at two separate speeds. While people were on the treadmill, researchers stimulated one side of the cerebellum to assess the impact on the rate of re-adjustment to a symmetric walking pattern.

Dr. Bastian's team found not only that cerebellar tDCS can change the rate of cerebellum-dependent locomotor learning, but specifically that the speeds up learning and the slows it down. It was also surprising that the side of the cerebellum that was stimulated mattered; only stimulation of the side that controls the leg walking on the faster belt changed adaptation rate.

"It is important to demonstrate that we can make learning faster or slower, as it suggests that we are not merely interfering with brain function," says Dr. Bastian. "Our findings also suggest that tDCS can be selectively used to assess and understand motor learning."

The results from this study present an exciting opportunity to test cerebellar tDCS as a rehabilitation tool. Dr. Bastian says, "If anodal tDCS prompts faster learning, this may help reduce the amount of time needed for stroke patients to relearn to walk evenly. It may also be possible to use tDCS to help sustain gains made in therapy, so patients can retain and practice improved walking patterns for a longer period of time. We are currently testing these ideas in individuals who have had a stroke."

Explore further: Alternating training improves motor learning

Related Stories

Alternating training improves motor learning

October 18, 2011
Learning from one's mistakes may be better than practicing to perfection, according to a study in the Oct. 19 issue of the Journal of Neuroscience. The study found that forcing people to switch from a normal walking pattern ...

Electrical stimulation to the brain makes learning easier

September 21, 2011
(Medical Xpress) -- A new study presented at the British Science Festival by Professor Heidi Johansen-Berg from the University of Oxford shows that the application of small electrical currents to specific parts of the brain ...

Robot legs helping stroke patients

September 26, 2011
(Medical Xpress) -- When it comes to recovering from a stroke, one of the major goals or rehabilitation is learning how to walk again. Researchers in the Netherlands are working with a prototype device called the LOwer Extremity ...

Recommended for you

Cognitive cross-training enhances learning, study finds

July 25, 2017
Just as athletes cross-train to improve physical skills, those wanting to enhance cognitive skills can benefit from multiple ways of exercising the brain, according to a comprehensive new study from University of Illinois ...

Brain disease seen in most football players in large report

July 25, 2017
Research on 202 former football players found evidence of a brain disease linked to repeated head blows in nearly all of them, from athletes in the National Football League, college and even high school.

Zebrafish study reveals clues to healing spinal cord injuries

July 25, 2017
Fresh insights into how zebrafish repair their nerve connections could hold clues to new therapies for people with spinal cord injuries.

Lutein may counter cognitive aging, study finds

July 25, 2017
Spinach and kale are favorites of those looking to stay physically fit, but they also could keep consumers cognitively fit, according to a new study from University of Illinois researchers.

Brain stimulation may improve cognitive performance in people with schizophrenia

July 24, 2017
Brain stimulation could be used to treat cognitive deficits frequently associated with schizophrenia, according to a new study from King's College London.

New map may lead to drug development for complex brain disorders, researcher says

July 24, 2017
Just as parents are not the root of all their children's problems, a single gene mutation can't be blamed for complex brain disorders like autism, according to a Keck School of Medicine of USC neuroscientist.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.