Study shows omega-3 fatty acid, curry spice repair tissue damage, preserve walking in rats with spinal-cord injury

June 26, 2012

UCLA researchers discovered that a diet enriched with a popular omega-3 fatty acid and an ingredient of curry spice preserved walking ability in rats with spinal-cord injury. Published June 26 in the Journal of Neurosurgery: Spine, the findings suggest that these dietary supplements help repair nerve cells and maintain neurological function after degenerative damage to the neck.

"Normal aging often narrows the , putting pressure on the and injuring tissue," explained principal investigator Dr. Langston Holly, associate professor of neurosurgery at the David Geffen School of Medicine at UCLA. "While surgery can relieve the pressure and prevent further injury, it can't repair damage to the cells and . We wanted to explore whether could help the spinal cord heal itself."

The UCLA team studied two groups of rats with a condition that simulated cervical myelopathy – a progressive disorder that often occurs in people with spine-weakening conditions like rheumatoid arthritis and osteoporosis. Cervical myelopathy can lead to disabling neurological symptoms, such as difficulty walking, neck and arm pain, hand numbness and weakness of the limbs. It's the most common cause of spine-related walking problems in people over 55.

The first group of animals was fed rat chow that replicated a Western diet high in saturated fats and sugar. The second group consumed a standard diet supplemented with docosahexaenoic acid, or DHA, and curcumin, a compound in turmeric, an Indian curry spice. A third set of rats received a standard rat diet and served as a control group.

Why these supplements? DHA is an omega-3 fatty acid shown to repair damage to cell membranes. Curcumin is a strong antioxidant that previous studies have linked to tissue repair. Both reduce inflammation.

"The brain and spinal cord work together, and years of research demonstrate that supplements like DHA and curcumin can positively influence the brain," said coauthor Fernando Gomez-Pinilla, professor of neurosurgery. "We suspected that what works in the brain may also work in the spinal cord. When we were unable to find good data to support our hypothesis, we decided to study it ourselves."

The researchers recorded a baseline of the rats walking and re-examined the animals' gait on a weekly basis. As early as three weeks, the rats eating the Western diet demonstrated measurable walking problems that worsened as the study progressed. Rats fed a diet enriched with DHA and curcumin walked significantly better than the first group even six weeks after the study's start.

Next, the scientists examined the rats' spinal cords to evaluate how diet affected their injury on a molecular level. The researchers measured levels of three markers respectively linked to cell-membrane damage, neural repair and cellular communication.

The rats that ate the Western diet showed higher levels of the marker linked to cell-membrane damage. In contrast, the DHA and curcumin appeared to offset the injury's effect in the second group, which displayed equivalent marker levels to the control group.

Levels of the markers linked to neural repair and cellular communication were significantly lower in the rats raised on the . Again, levels in the animals fed the supplemented diet appeared similar to those of the control group.

"DHA and curcumin appear to invoke several molecular mechanisms that preserved in the ," said Gomez-Pinilla. "This is an exciting first step toward understanding the role that diet plays in protecting the body from degenerative disease."

"Our findings suggest that diet can help minimize disease-related changes and repair damage to the spinal cord," said Holly. "We next want to look at other mechanisms involved in the cascade of events leading up to chronic spinal-cord injury. Our goal is to identify which stages will respond best to medical intervention and identify effective steps for slowing the disease process."

Explore further: Research offers hope in new treatment for spinal cord injuries

More information: Holly LT, Blaskiewicz D, Wu A, Feng C, Ying Z, Gomez-Pinilla F. "Dietary therapy to promote neuroprotection in chronic spinal cord injury. Laboratory investigation." Journal of Neurosurgery: Spine, published online June 26, 2012, ahead of print; DOI: 10.3171/2012.5.SPINE1216

Related Stories

Research offers hope in new treatment for spinal cord injuries

May 3, 2011
Rutgers researchers have developed an innovative new treatment that could help minimize nerve damage in spinal cord injuries, promote tissue healing and minimize pain.

Sugar makes you stupid: Study shows high-fructose diet sabotages learning, memory

May 15, 2012
Attention, college students cramming between midterms and finals: Binging on soda and sweets for as little as six weeks may make you stupid.

Evidence for spinal membrane as a source of stem cells may advance spinal cord treatment

October 28, 2011
Italian and Spanish scientists studying the use of stem cells for treating spinal cord injuries have provided the first evidence to show that meninges, the membrane which envelops the central nervous system, is a potential ...

Recommended for you

Small but distinct differences among species mark evolution of human brain

November 23, 2017
The most dramatic divergence between humans and other primates can be found in the brain, the primary organ that gives our species its identity.

Team constructs whole-brain map of electrical connections key to forming memories

November 22, 2017
A team of neuroscientists at the University of Pennsylvania has constructed the first whole-brain map of electrical connectivity in the brain based on data from nearly 300 neurosurgical patients with electrodes implanted ...

What if consciousness is not what drives the human mind?

November 22, 2017
Everyone knows what it feels like to have consciousness: it's that self-evident sense of personal awareness, which gives us a feeling of ownership and control over the thoughts, emotions and experiences that we have every ...

To forget or to remember? Memory depends on subtle brain signals, scientists find

November 22, 2017
The fragrance of hot pumpkin pie can bring back pleasant memories of holidays past, while the scent of an antiseptic hospital room may cause a shudder. The power of odors to activate memories both pleasing and aversive exists ...

Pitch imperfect? How the brain decodes pitch may improve cochlear implants

November 22, 2017
Picture yourself with a friend in a crowded restaurant. The din of other diners, the clattering of dishes, the muffled notes of background music, the voice of your friend, not to mention your own – all compete for your ...

New research suggests high-intensity exercise boosts memory

November 22, 2017
The health advantages of high-intensity exercise are widely known but new research from McMaster University points to another major benefit: better memory.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

TGD
not rated yet Jun 26, 2012
AWESOME!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.