Researchers find protein deposits linked to Alzheimer's disease behave like prions

June 20, 2012 by Bob Yirka report

(Medical Xpress) -- Researchers from the University of California have found that a peptide that forms deposits in the human brain and is thought to be responsible for the onset of Alzheimer’s disease, behaves in ways that are very similar to the way prions behave when propagating through mammalian neurological tissue. In their paper published in the Proceedings of the National Academy of Sciences describing their research into the ways amyloid-β (Aβ) peptides form deposits, the team found that they propagate across brain tissue in much the say way prions do when causing ailments such as Creutzfeldt-Jakob disease (CJD).

Prions, short for “protein infection” are neither bacterial nor virus and instead are defined as a somewhat mysterious condition, rather than as an infection, despite the fact that diseases that are caused by them are communicable, e.g. mad cow disease. Instead of an infectious agent, cells in the body simply react to the sudden presence of an abnormally folded protein by folding in a likewise manner, propagating across brain or nerve tissue until the victim succumbs. Sadly, scientists don’t yet know how they really do their work and thus can offer no cure for those afflicted.

In this new research, the team introduced the peptide amyloid-β (Aβ) along with a florescent molecule, into just one side of the brain of several mice and then watched what happened over nearly a year’s time. Because of the florescent molecule, the team was able to track the progress of the peptide as it propagated to the other side of the brain, eventually damaging the entire structure. This, the team says, suggests that Aβ is either a prion or something that acts an awful lot like one. There’s one hitch though, diseases caused by prions are generally contagious and thus far there is no reason to believe that Alzheimer’s disease can be passed from person to person.

Whether it is a or isn’t, researchers will likely approach research into Alzheimer’s disease with a different view now that it’s known that the disease starts in one part of the brain and propagates to others, rather than simply cropping up in small bits all over the and progressing to a worse state as time passes, as has been thought to be the case up till now.

Explore further: Blood test for human form of mad cow disease developed

More information: Purified and synthetic Alzheimer’s amyloid beta (Aβ) prions, PNAS, Published online before print June 18, 2012, doi: 10.1073/pnas.1206555109

Abstract
The aggregation and deposition of amyloid-β (Aβ) peptides are believed to be central events in the pathogenesis of Alzheimer’s disease (AD). Inoculation of brain homogenates containing Aβ aggregates into susceptible transgenic mice accelerated Aβ deposition, suggesting that Aβ aggregates are capable of self-propagation and hence might be prions. Recently, we demonstrated that Aβ deposition can be monitored in live mice using bioluminescence imaging (BLI). Here, we use BLI to probe the ability of Aβ aggregates to self-propagate following inoculation into bigenic mice. We report compelling evidence that Aβ aggregates are prions by demonstrating widespread cerebral β-amyloidosis induced by inoculation of either purified Aβ aggregates derived from brain or aggregates composed of synthetic Aβ. Although synthetic Aβ aggregates were sufficient to induce Aβ deposition in vivo, they exhibited lower specific biological activity compared with brain-derived Aβ aggregates. Our results create an experimental paradigm that should lead to identification of self-propagating Aβ conformations, which could represent novel targets for interrupting the spread of Aβ deposition in AD patients.

Related Stories

Blood test for human form of mad cow disease developed

January 16, 2012
(Medical Xpress) -- Mad cow disease is serious business in the U.K., the human form, known as Creutzfeldt-Jakob after Hans Gerhard Creutzfeldt and Alfons Maria Jakob (CJD), who independently first described its existence ...

Advances in research into Alzheimer's disease

July 9, 2011
Advances in research into Alzheimer's disease: transporter proteins at the blood CSF barrier and vitamin D may help prevent amyloid β build up in the brain

Scientists study link between amyloid beta peptide levels and Alzheimer's disease

March 20, 2012
The effects of the bacterial endotoxin lipopolysaccharide (LPS) has been found to elevate amyloid beta (Aβ) peptide levels in the brain, leading to short-term deficits in learning.

Recommended for you

Are stem cells the link between bacteria and cancer?

August 17, 2017
Gastric carcinoma is one of the most common causes of cancer-related deaths, primarily because most patients present at an advanced stage of the disease. The main cause of this cancer is the bacterium Helicobacter pylori, ...

Two-step process leads to cell immortalization and cancer

August 17, 2017
A mutation that helps make cells immortal is critical to the development of a tumor, but new research at the University of California, Berkeley suggests that becoming immortal is a more complicated process than originally ...

New Pathology Atlas maps genes in cancer to accelerate progress in personalized medicine

August 17, 2017
A new Pathology Atlas is launched today with an analysis of all human genes in all major cancers showing the consequence of their corresponding protein levels for overall patient survival. The difference in expression patterns ...

Female mouse embryos actively remove male reproductive systems

August 17, 2017
A protein called COUP-TFII determines whether a mouse embryo develops a male reproductive tract, according to researchers at the National Institutes of Health and their colleagues at Baylor College of Medicine, Houston. The ...

New technique overcomes genetic cause of infertility

August 17, 2017
Scientists have created healthy offspring from genetically infertile male mice, offering a potential new approach to tackling a common genetic cause of human infertility.

Inhibiting a protein found to reduce progression of Alzheimer's and ALS in mice

August 17, 2017
(Medical Xpress)—A team of researchers with Genetech Inc. and universities in Hamburg and San Francisco has found that inhibiting the creation of a protein leads to a reduction in the progression of Alzheimer's disease ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.