Tracking MRSA in real time: Study highlights benefits of rapid whole-genome sequencing

June 13, 2012

In a new study released today in New England Journal of Medicine, researchers demonstrate that whole genome sequencing can provide clinically relevant data on bacterial transmission within a timescale that can influence infection control and patient management.

Scientists from the Wellcome Trust Sanger Institute, University of Cambridge, and Illumina collaborated to use to identify which isolates of methicillin-resistant Staphylococcus aureus (MRSA) were part of a hospital outbreak.

Current laboratory techniques often cannot distinguish between MRSA isolates. This study indicates that whole genome sequencing can provide precise information in a fast turnaround time, and could make a clear distinction between MRSA isolates in a way that was not previously possible.

MRSA infection is a major public health problem. For example, in the United States, an estimated 89,785 invasive MRSA infections associated with 15,249 deaths occurred in 2008. Even when the disease is treated, double the average length of hospital stay and increase healthcare costs. Fast and accurate detection of bacterial transmission is crucial to better control of healthcare-associated infection.

"An important limitation of current infection control methodology is that the available bacterial typing methods cannot distinguish between different of MRSA," explains Professor Sharon Peacock, lead author from the University of Cambridge and clinical specialist at the . "The purpose of our study was to see if whole genome sequencing of MRSA could be used to distinguish between related strains at a genome level, and if this would inform and guide outbreak investigations."

The team focused on an outbreak in a unit that had already ended. They took the samples and sequenced them as if they had been working in real time. They found they could distinguish between strains that were part of the outbreak and strains that were not, and showed that they could have identified the outbreak earlier than current clinical testing, potentially shortening the outbreak.

"This study demonstrates how advances in whole genome sequencing can provide essential information to help combat hospital outbreaks in clinically relevant turnaround times," says Dr Geoffrey Smith, co-lead author and Senior Director of Research at Illumina. "As sequencing has become increasingly accurate and comprehensive, it can be used to answer a wide range of questions. Not only could we distinguish different MRSA strains in the hospital, we were also able to rapidly characterise antibiotic resistance and toxin genes present in the clinical isolates."

The team constructed a list of all the MRSA genes that cause antibiotic resistance. Rapidly identifying drug resistance in MRSA strains will guide healthcare professionals to give each infected patient the most appropriate treatment possible. This also provides a powerful tool for the discovery of new drug resistance mechanisms.

MRSA produces numerous unique toxins that can inflict severe clinical syndromes, including septic shock, pneumonia, and complicated skin and soft tissue infections. The team created a list of toxin genes to rapidly identify those present in the MRSA strains, which currently can only be identified with multiple assays in reference laboratories.

"Distinguishing between strains is important for infection control management," says Dr Julian Parkhill, lead author from the Wellcome Trust Sanger Institute. "Quick action is essential to control a suspected outbreak, but it is of equal importance to identify unrelated strains to prevent unnecessary ward closures and other disruptive control measures. Healthcare needs better, more efficient ways of identifying an outbreak and then processing the data."

"Current clinical methods to make links between related strains compare the pattern of bacterial susceptibility to a profile of antibiotics. We found this method to be inaccurate. We showed that two MRSA strains, which seemed by current methods to be identical, were genetically very different."

The use of whole genome sequencing will ultimately become part of routine health care. This study indicates that whole in real time will be valuable in controlling MRSA and other outbreaks in a hospital setting.

"The next stage is to develop interactive tools that provide automated interpretation of genome sequence and provide clinically meaningful information to healthcare workers, a necessary advance before this can be rolled out into clinical practice," adds Professor Peacock.

Explore further: New type of MRSA in hospitalized patients probably of animal origin

More information: Köser CU, Holden MTG, Ellington MJ, Cartwright EJP et al. (2012) A neonatal MRSA outbreak investigation using rapid whole genome sequencing. New England Journal of Medicine, doi: 10.1056/NEJMoa1109910

Related Stories

New type of MRSA in hospitalized patients probably of animal origin

June 2, 2011
A distinctly new type of methicillin resistant Staphylococcus aureus (MRSA) that is not detected by traditional genetic screening methods has been discovered in patients in Irish hospitals according to research to be published ...

Scientists battle against superbugs by targeting toxin released by virtually all strains of MRSA

October 13, 2011
Targeting a toxin released by virtually all strains of MRSA could help scientists develop new drugs that can fight the superbug, research suggests.

MRSA tailors virulence mechanisms to the hospital setting

April 25, 2012
(Medical Xpress) -- In the hospital environment where antibiotic usage is extremely high, it seems that healthcare associated methicillin resistant Staphylococcus aureus (MRSA) has cleverly adapted for survival.

Recommended for you

New approach to studying chromosomes' centers may reveal link to Down syndrome and more

November 20, 2017
Some scientists call it the "final frontier" of our DNA—even though it lies at the center of every X-shaped chromosome in nearly every one of our cells.

Genome editing enhances T-cells for cancer immunotherapy

November 20, 2017
Researchers at Cardiff University have found a way to boost the cancer-destroying ability of the immune system's T-cells, offering new hope in the fight against a wide range of cancers.

A math concept from the engineering world points to a way of making massive transcriptome studies more efficient

November 17, 2017
To most people, data compression refers to shrinking existing data—say from a song or picture's raw digital recording—by removing some data, but not so much as to render it unrecognizable (think MP3 or JPEG files). Now, ...

Genetic mutation in extended Amish family in Indiana protects against aging and increases longevity (Update)

November 15, 2017
The first genetic mutation that appears to protect against multiple aspects of biological aging in humans has been discovered in an extended family of Old Order Amish living in the vicinity of Berne, Indiana, report Northwestern ...

US scientists try first gene editing in the body

November 15, 2017
Scientists for the first time have tried editing a gene inside the body in a bold attempt to permanently change a person's DNA to try to cure a disease.

Genetic variant prompts cells to store fat, fueling obesity

November 13, 2017
Obesity is often attributed to a simple equation: People are eating too much and exercising too little. But evidence is growing that at least some of the weight gain that plagues modern humans is predetermined. New research ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.