Stimulating the brain through touch

July 19, 2012
Dr. George Van Doorn and a participant in the fMRI

(Medical Xpress) -- When learning to master complex movements such as those required in surgery, is being physically guided by an expert more effective than learning through trial and error?

New research by Monash University’s Departments of Psychological Studies and Physiology challenges earlier claims that externally guided (or passive) movement is a superior learning method to self-generated (or active) movement.

In the first study of its kind, researchers discovered that different brain regions become active depending on the type of movement used. Lead researcher Dr. George Van Doorn, head of Psychological Studies, said the findings did not support the view that passive movement was a more effective way to learn.

“There has been much debate over the last 30 years about which form of movement is better,” Dr. Van Doorn said.

“We found that active movements result in greater activation in brain areas implicated in higher-order processes such as monitoring and controlling goal-directed behaviour, attention, execution of movements, and error detection.

“Passive movements, in contrast, produced greater activity in areas associated with touch perception, length discrimination, tactile object recognition, and the attenuation of sensory inputs.”

People were tested while making movements themselves, and while being guided.

“Whilst inside a functional Magnetic Resonance Imaging (fMRI) machine, we had people either freely move their index finger around a two-dimensional, raised-line pattern to measure self-generated touch. Or we had an experimenter guide the person’s finger around the pattern, to measure externally generated touch. Using the fMRI, we found that different regions become active depending on the type of used,” Dr. Van Doorn said.

Dr. Van Doorn said touch was becoming a popular area of investigation, with more scientists contributing to understanding about this important, though under-acknowledged, sensory system.

All researchers involved in this study are located at Monash University’s Gippsland campus. The study findings were presented at EuroHaptics 2012, a major international conference and the primary European meeting for researchers in the field of human haptic sensing and touch-enabled computer applications.

Explore further: People mimic each other, but we aren't chameleons

Related Stories

People mimic each other, but we aren't chameleons

January 11, 2012
(Medical Xpress) -- It’s easy to pick up on the movements that other people make—scratching your head, crossing your legs. But a new study published in Psychological Science, a journal of the Association for Psychological ...

Playing music alters the processing of multiple sensory stimuli in the brain

November 24, 2011
(Medical Xpress) -- Over the years pianists develop a particularly acute sense of the temporal correlation between the movements of the piano keys and the sound of the notes played. However, they are no better than non-musicians ...

Seeing movement: Why the world in our head stays still when we move our eyes

March 21, 2012
Scientists from Germany discovered new functions of brain regions that are responsible for seeing movement.

Clear vision despite a heavy head: Model explains the choice of simple movements

November 9, 2011
The brain likes stereotypes - at least for movements. Simple actions are most often performed in the same manner. A mathematical model explains why this is the case and could be used to generate more natural robot movements ...

Recommended for you

Our memory shifts into high gear when we think about raising our children, new study shows

December 15, 2017
Human memory has evolved so people better recall events encountered while they are thinking about raising their offspring, according to a new study conducted by researchers at Binghamton University, State University of New ...

Offbeat brain rhythms during sleep make older adults forget

December 15, 2017
Like swinging a tennis racket during a ball toss to serve an ace, slow and speedy brainwaves during deep sleep must sync up at exactly the right moment to hit the save button on new memories, according to new UC Berkeley ...

Study finds graspable objects grab attention more than images of objects do

December 15, 2017
Does having the potential to act upon an object have a unique influence on behavior and brain responses to the object? That is the question Jacqueline Snow, assistant professor of psychology at the University of Nevada, Reno, ...

Little understood cell helps mice see color

December 14, 2017
Researchers at the University of Colorado Anschutz Medical Campus have discovered that color vision in mice is far more complex than originally thought, opening the door to experiments that could potentially lead to new treatments ...

Scientists chart how brain signals connect to neurons

December 14, 2017
Scientists at Johns Hopkins have used supercomputers to create an atomic scale map that tracks how the signaling chemical glutamate binds to a neuron in the brain. The findings, say the scientists, shed light on the dynamic ...

Activating MSc glutamatergic neurons found to cause mice to eat less

December 13, 2017
(Medical Xpress)—A trio of researchers working at the State University of New York has found that artificially stimulating neurons that exist in the medial septal complex in mouse brains caused test mice to eat less. In ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.