Stimulating the brain through touch

July 19, 2012
Dr. George Van Doorn and a participant in the fMRI

(Medical Xpress) -- When learning to master complex movements such as those required in surgery, is being physically guided by an expert more effective than learning through trial and error?

New research by Monash University’s Departments of Psychological Studies and Physiology challenges earlier claims that externally guided (or passive) movement is a superior learning method to self-generated (or active) movement.

In the first study of its kind, researchers discovered that different brain regions become active depending on the type of movement used. Lead researcher Dr. George Van Doorn, head of Psychological Studies, said the findings did not support the view that passive movement was a more effective way to learn.

“There has been much debate over the last 30 years about which form of movement is better,” Dr. Van Doorn said.

“We found that active movements result in greater activation in brain areas implicated in higher-order processes such as monitoring and controlling goal-directed behaviour, attention, execution of movements, and error detection.

“Passive movements, in contrast, produced greater activity in areas associated with touch perception, length discrimination, tactile object recognition, and the attenuation of sensory inputs.”

People were tested while making movements themselves, and while being guided.

“Whilst inside a functional Magnetic Resonance Imaging (fMRI) machine, we had people either freely move their index finger around a two-dimensional, raised-line pattern to measure self-generated touch. Or we had an experimenter guide the person’s finger around the pattern, to measure externally generated touch. Using the fMRI, we found that different regions become active depending on the type of used,” Dr. Van Doorn said.

Dr. Van Doorn said touch was becoming a popular area of investigation, with more scientists contributing to understanding about this important, though under-acknowledged, sensory system.

All researchers involved in this study are located at Monash University’s Gippsland campus. The study findings were presented at EuroHaptics 2012, a major international conference and the primary European meeting for researchers in the field of human haptic sensing and touch-enabled computer applications.

Explore further: People mimic each other, but we aren't chameleons

Related Stories

People mimic each other, but we aren't chameleons

January 11, 2012
(Medical Xpress) -- It’s easy to pick up on the movements that other people make—scratching your head, crossing your legs. But a new study published in Psychological Science, a journal of the Association for Psychological ...

Playing music alters the processing of multiple sensory stimuli in the brain

November 24, 2011
(Medical Xpress) -- Over the years pianists develop a particularly acute sense of the temporal correlation between the movements of the piano keys and the sound of the notes played. However, they are no better than non-musicians ...

Seeing movement: Why the world in our head stays still when we move our eyes

March 21, 2012
Scientists from Germany discovered new functions of brain regions that are responsible for seeing movement.

Clear vision despite a heavy head: Model explains the choice of simple movements

November 9, 2011
The brain likes stereotypes - at least for movements. Simple actions are most often performed in the same manner. A mathematical model explains why this is the case and could be used to generate more natural robot movements ...

Recommended for you

Scientists reveal new avenue for drug treatment in neuropathic pain

November 24, 2017
New research from King's College London has revealed a previously undiscovered mechanism of cellular communication, between neurons and immune cells, in neuropathic pain.

Small but distinct differences among species mark evolution of human brain

November 23, 2017
The most dramatic divergence between humans and other primates can be found in the brain, the primary organ that gives our species its identity.

Team constructs whole-brain map of electrical connections key to forming memories

November 22, 2017
A team of neuroscientists at the University of Pennsylvania has constructed the first whole-brain map of electrical connectivity in the brain based on data from nearly 300 neurosurgical patients with electrodes implanted ...

To forget or to remember? Memory depends on subtle brain signals, scientists find

November 22, 2017
The fragrance of hot pumpkin pie can bring back pleasant memories of holidays past, while the scent of an antiseptic hospital room may cause a shudder. The power of odors to activate memories both pleasing and aversive exists ...

Pitch imperfect? How the brain decodes pitch may improve cochlear implants

November 22, 2017
Picture yourself with a friend in a crowded restaurant. The din of other diners, the clattering of dishes, the muffled notes of background music, the voice of your friend, not to mention your own – all compete for your ...

New research suggests high-intensity exercise boosts memory

November 22, 2017
The health advantages of high-intensity exercise are widely known but new research from McMaster University points to another major benefit: better memory.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.