Under the right conditions, peptide blocks HIV infection at multiple points along the way

July 24, 2012 by Danielle Gutierrez

Human defensins, aptly named antimicrobial peptides, are made in immune system cells and epithelial cells (such as skin cells and cells that line the gut). One of these peptides, human neutrophil peptide 1, under certain circumstances hinders HIV infection, but exactly how it works remains unclear.

HIV entry into mature T- (cells essential to the immune system) proceeds by attachment of the virus to specific targets on T-helper cells, uptake of the virus, fusion of its envelope with the cell membranes, and release of the virus into the cells. In a forthcoming Paper of the Week, Gregory Melikyan at Emory University and colleagues investigated the ability of human neutrophil peptide 1 to impede each step of this process.

Using lines, Melikyan's group showed that human neutrophil peptide 1 effectively prevented HIV entry into cells in multiple ways. First, human neutrophil peptide 1 reduced the number of specific targets on the cells available for HIV attachment. Second, this defensin also bound to specific targets on both the HIV envelope and the cells, preventing early and late stages of HIV-. Finally, human neutrophil peptide 1 prevented HIV uptake into the cells without compromising the general ability of the cells to engulf other molecules.

While human neutrophil peptide 1 hinders HIV entry into cells under these lab conditions, it does not do so as effectively in the presence of serum -- meaning that it may not be as successful at blocking HIV in our bodies. But Melikyan's team showed that human neutrophil peptide 1 remained attached to its specific targets in the presence of serum, despite its reduced efficacy. Their work suggests that the structure of human neutrophil peptide 1 is important for its anti-HIV activity, and they propose that serum may interfere with the ability of this defensin to form complexes, reducing its ability to block HIV.

"Our work provides new insights into the ability of defensins to recognize and neutralize diverse pathogens, including HIV," Melikyan says. This research reveals that human neutrophil peptide 1 can bind various viral and cellular targets and that a previously unappreciated feature is essential for its anti-HIV activity, possibly its propensity to form large complexes, Melikyan explains.

The team's findings suggest a new avenue of research for combatting HIV and viruses that infiltrate cells in a similar manner.

Explore further: Entry prohibited for AIDS viruses: Peptide triazole inhibitors disrupt cell-free HIV-1

More information: "Multifaceted mechanisms of HIV-1 entry inhibition by human alpha-defensin" by Lusine H. Demirkhanyan, Mariana Marin, Sergi Padilla-Parra, Changyou Zhan, Kosuke Miyauchi, Maikha Jean-Baptiste, Gennadiy Novitskiy, Wuyuan Lu, and Gregory B. Melikyan (to be published in the Aug. 17 issue of the Journal of Biological Chemistry and currently online as a Paper in Press at www.jbc.org/content/early/2012 … M112.375949.full.pdf )

Related Stories

Entry prohibited for AIDS viruses: Peptide triazole inhibitors disrupt cell-free HIV-1

July 8, 2011
(PhysOrg.com) -- The initial entry of HIV-1 into host cells remains a compelling yet elusive target for the development of agents to prevent infection, a critical need in the fight against the global AIDS epidemic.

Step in breakdown of HIV proteins essential to recognition, destruction of infected cells

May 9, 2011
A key step in the processing of HIV within cells appears to affect how effectively the immune system's killer T cells can recognize and destroy infected cells. Researchers at the Ragon Institute of MGH, MIT and Harvard have ...

Mechanism of HIV spread has potential for future drug therapy

April 23, 2012
A new understanding of the initial interactions of human immunodeficiency virus type 1 (HIV-1) and dendritic cells is described by Boston University School of Medicine (BUSM) researchers in a study currently featured in the ...

New memory for HIV patients

March 26, 2012
The hallmark loss of helper CD4+ T cells during human immunodeficiency virus (HIV) infection may be a red herring for therapeutics, according to a study published on March 26th in the Journal of Experimental Medicine.

Recommended for you

Three-in-one antibody protects monkeys from HIV-like virus

September 20, 2017
A three-pronged antibody made in the laboratory protected monkeys from infection with two strains of SHIV, a monkey form of HIV, better than individual natural antibodies from which the engineered antibody is derived, researchers ...

Fighting HIV on multiple fronts might lead to vaccine

September 20, 2017
A combination antibody strategy could be the key to halting the spread of HIV, according to results from two promising animal studies.

HIV-AIDS: Following your gut

September 18, 2017
Researchers at the University of Montreal Hospital Research Centre (CRCHUM) have discovered a way to slow viral replication in the gastrointestinal tract of people infected by HIV-AIDS.

Study finds cutbacks in foreign aid for HIV treatment would cause great harm

August 30, 2017
Proposed reductions in U.S. foreign aid would have a devastating impact on HIV treatment and prevention programs in countries receiving such aid, an international team of investigators reports. In their paper published online ...

Cancer drug can reactivate HIV

August 24, 2017
People living with HIV must take a combination of three or more different drugs every day for the rest of their lives. Unfortunately, by following this strict treatment plan, they can suffer from side effects ranging from ...

New injectable antiretroviral treatment proved to be as effective as standard oral therapy

August 3, 2017
Intramuscularly administered antiretroviral therapy (ART) may be as effective for HIV treatment as current oral therapies. This is the main conclusion of a Phase II clinical trial carried out by 50 research centers around ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.