Connectomics: Mapping the neural network governing male roundworm mating

July 26, 2012, Albert Einstein College of Medicine

In a study published today online in Science, researchers at Albert Einstein College of Medicine of Yeshiva University have determined the complete wiring diagram for the part of the nervous system controlling mating in the male roundworm Caenorhabditis elegans, an animal model intensively studied by scientists worldwide.

The study represents a major contribution to the new field of connectomics – the effort to map the myriad neural connections in a brain, brain region or nervous system to find the specific nerve connections responsible for particular behaviors. A long-term goal of connectomics is to map the human "connectome" – all the nerve connections within the human brain.

Because C. elegans is such a tiny animal– adults are one millimeter long and consist of just 959 cells – its simple totaling 302 neurons make it one of the best animal models for understanding the millions-of-times-more-complex human brain.

The Einstein scientists solved the structure of the male worm's neural mating circuits by developing software that they used to analyze serial electron micrographs that other scientists had taken of the region. They found that male mating requires 144 neurons – nearly half the worm's total number – and their paper describes the connections between those 144 neurons and 64 muscles involving some 8,000 synapses. A synapse is the junction at which one neuron (nerve cell) passes an electrical or chemical signal to another neuron.

"Establishing the complete structure of the synaptic network governing mating behavior in the male has been highly revealing," said Scott Emmons, Ph.D. , senior author of the paper and professor in the department of genetics and in the Dominick P. Purpura Department of Neuroscience at Einstein. "We can see that the structure of this network has spatial characteristics that help explain how it exerts neural control over the multi-step decision-making process involved in ."

In addition to determining how the neurons and muscles are connected, Dr. Emmons and his colleagues for the first time accurately measured the weights of those connections, i.e., an estimate of the strength with which one neuron or muscle communicates with another.

Explore further: Mapping the brain: New technique poised to untangle the complexity of the brain

More information: "The connectome of a decision-making neural network." Science, 2012.

Related Stories

Mapping the brain: New technique poised to untangle the complexity of the brain

April 10, 2011
(PhysOrg.com) -- Scientists have moved a step closer to being able to develop a computer model of the brain after developing a technique to map both the connections and functions of nerve cells in the brain together for the ...

Tiny worms change direction using two human-like neural circuits

November 11, 2011
(Medical Xpress) -- A University of Michigan biologist and his colleagues have found that the strategies used by the tiny C. elegans roundworm to control its motions are remarkably similar to those used by the human brain ...

Mathematical model unlocks key to brain wiring

May 10, 2012
(Medical Xpress) -- A new mathematical model predicting how nerve fibres make connections during brain development could aid understanding of how some cognitive disorders occur.

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

A 'touching sight': How babies' brains process touch builds foundations for learning

January 16, 2018
Touch is the first of the five senses to develop, yet scientists know far less about the baby's brain response to touch than to, say, the sight of mom's face, or the sound of her voice.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.