Connectomics: Mapping the neural network governing male roundworm mating

July 26, 2012

In a study published today online in Science, researchers at Albert Einstein College of Medicine of Yeshiva University have determined the complete wiring diagram for the part of the nervous system controlling mating in the male roundworm Caenorhabditis elegans, an animal model intensively studied by scientists worldwide.

The study represents a major contribution to the new field of connectomics – the effort to map the myriad neural connections in a brain, brain region or nervous system to find the specific nerve connections responsible for particular behaviors. A long-term goal of connectomics is to map the human "connectome" – all the nerve connections within the human brain.

Because C. elegans is such a tiny animal– adults are one millimeter long and consist of just 959 cells – its simple totaling 302 neurons make it one of the best animal models for understanding the millions-of-times-more-complex human brain.

The Einstein scientists solved the structure of the male worm's neural mating circuits by developing software that they used to analyze serial electron micrographs that other scientists had taken of the region. They found that male mating requires 144 neurons – nearly half the worm's total number – and their paper describes the connections between those 144 neurons and 64 muscles involving some 8,000 synapses. A synapse is the junction at which one neuron (nerve cell) passes an electrical or chemical signal to another neuron.

"Establishing the complete structure of the synaptic network governing mating behavior in the male has been highly revealing," said Scott Emmons, Ph.D. , senior author of the paper and professor in the department of genetics and in the Dominick P. Purpura Department of Neuroscience at Einstein. "We can see that the structure of this network has spatial characteristics that help explain how it exerts neural control over the multi-step decision-making process involved in ."

In addition to determining how the neurons and muscles are connected, Dr. Emmons and his colleagues for the first time accurately measured the weights of those connections, i.e., an estimate of the strength with which one neuron or muscle communicates with another.

Explore further: Mapping the brain: New technique poised to untangle the complexity of the brain

More information: "The connectome of a decision-making neural network." Science, 2012.

Related Stories

Mapping the brain: New technique poised to untangle the complexity of the brain

April 10, 2011
(PhysOrg.com) -- Scientists have moved a step closer to being able to develop a computer model of the brain after developing a technique to map both the connections and functions of nerve cells in the brain together for the ...

Tiny worms change direction using two human-like neural circuits

November 11, 2011
(Medical Xpress) -- A University of Michigan biologist and his colleagues have found that the strategies used by the tiny C. elegans roundworm to control its motions are remarkably similar to those used by the human brain ...

Mathematical model unlocks key to brain wiring

May 10, 2012
(Medical Xpress) -- A new mathematical model predicting how nerve fibres make connections during brain development could aid understanding of how some cognitive disorders occur.

Recommended for you

Scientists capture first image of major brain receptor in action

July 24, 2017
Columbia University Medical Center (CUMC) researchers have captured the first three-dimensional snapshots of the AMPA-subtype glutamate receptor in action. The receptor, which regulates most electrical signaling in the brain, ...

Research identifies new brain death pathway in Alzheimer's disease

July 24, 2017
Alzheimer's disease tragically ravages the brains, memories and ultimately, personalities of its victims. Now affecting 5 million Americans, Alzheimer's disease is the sixth leading cause of death in the U.S., and a cure ...

Eye test could help diagnose autism

July 24, 2017
A new study out in European Journal of Neuroscience could herald a new tool that helps physicians identify a sub-group of people with Autism spectrum disorders (ASD). The test, which consists of measuring rapid eye movements, ...

Illuminating neural pathways in the living brain

July 24, 2017
Using light alone, scientists from the Max Planck Institute of Neurobiology in Martinsried are now able to reveal pairs or chains of functionally connected neurons under the microscope. The new optogenetic method, named Optobow, ...

Study suggests link between autism, pain sensitivity

July 24, 2017
New research by a UT Dallas neuroscientist has established a link between autism spectrum disorder (ASD) and pain sensitivity. 

The neural codes for body movements

July 21, 2017
A small patch of neurons in the brain can encode the movements of many body parts, according to researchers in the laboratory of Caltech's Richard Andersen, James G. Boswell Professor of Neuroscience, Tianqiao and Chrissy ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.