Discovery of new white blood cell reveals target for better vaccine design

July 27, 2012

Researchers in Newcastle and Singapore have identified a new type of white blood cell which activates a killing immune response to an external source – providing a new potential target for vaccines for conditions such as cancer or Hepatitis B.

Publishing in the journal Immunity, the team of researchers from Newcastle University in collaboration with A*STAR's Singapore Immunology Network (SIgN) describe a new human tissue dendritic cell with cross-presenting function.

Dendritic cells (DCs) are a type of white blood cell that orchestrate our body's immune responses to infectious agents such as bacteria and viruses, as well as cancer cells. They are also very important for eliciting the immune response generated by vaccines.

DCs kick start an immune response by presenting small fragments of molecules from micro-organisms such as bacteria and viruses, or from vaccines or tumours, called antigens on their surface. This leads to activation of another white blood cell subset called T cells, which specialise in killing cells and are crucial for eliminating cancerous or infected cells. Most cells are only able to present antigens from within themselves, and so will only elicit an if they are infected themselves. Only a specialised subset of DCs is able to generate a response to an external source of antigen, for example bacteria, vaccines and tumours.

The identity of human tissue DCs that are capable of presenting external antigen to activate the cell-killing response by T cells - a process termed 'cross-presentation' - has remained a mystery. Their discovery, as revealed by this research, will help scientists to design better targeted vaccine strategies to treat cancer and infections such as Hepatitis B.

"These are the cells we need to be targeting for anti-cancer vaccines," said Dr Muzlifah Haniffa, a Wellcome Trust Intermediate Fellow and Senior Clinical Lecturer at Newcastle University. "Our discovery offers an accessible, easily targetable system which makes the most of the natural ability of the cell."

The researchers also showed for the first time that dendritic cell subsets are conserved between species and have in effect created a map, facilitating the translation of studies to the human immune system.

"The cross-species map is in effect a Rosetta stone that deciphers the language of mouse into human", explains Matthew Collin, Professor of Haematology from Newcastle University.

In the paper the researchers describe how the cross-presenting DCs were first isolated from surplus plastic surgery skin which was digested to melt the gelatinous collagen to isolate the cells.

This research will have significant impact on the design of vaccines and other targeted immunotherapies.

The Rosetta Stone of our immune system: Mapping Human and Mouse dendritic cells

The Newcastle University team in collaboration with A*STAR's Immunology Network (SIgN) have for the first time ever aligned the dendritic cell subsets between mouse and humans allowing the accurate translation of mouse studies into the human model for the first time.

The researchers isolated the dendritic cells from human blood and skin and those from mouse blood, lung and liver. Using gene expression analysis, they identified gene signatures for each human dendritic cell subset. Mouse orthologues of these genes were identified and a computational analysis was performed to match subsets across species.

This provides scientists for the first time with an accurate model to compare DCs between species.

Professor Matthew Collin explains: "This is in effect a Rosetta stone that deciphers the language of mouse into human. It can put into context the findings from the extensive literature using mouse models to the human settings".

Dr. Haniffa added: "These gene signatures are available in a public repository accessible for all researchers to benefit from the data. It will allow detailed knowledge of individual human dendritic cell subsets to enable specific targeting of these for therapeutic strategy."

Explore further: Scientists discover dendritic cells key to activating human immune responses

More information: Human Tissues Contain CD141(hi) Cross-Presenting Dendritic Cells with Functional Homology to Mouse CD103(+) Nonlymphoid Dendritic Cells. Haniffa M, Shin A, Bigley V, McGovern N, Teo P, See P, Wasan PS, Wang XN, Malinarich F, Malleret B, Larbi A, Tan P, Zhao H, Poidinger M, Pagan S, Cookson S, Dickinson R, Dimmick I, Jarrett RF, Renia L, Tam J, Song C, Connolly J, Chan JK, Gehring A, Bertoletti A, Collin M, Ginhoux F. Immunity. 2012.

Related Stories

Scientists discover dendritic cells key to activating human immune responses

July 16, 2012
Scientists at A*STAR’s Singapore Immunology Network (SIgN), in collaboration with Newcastle University, UK, the Singapore Institute of Clinical Sciences and clinicians from multiple hospitals in Singapore, have identified ...

Skin sentry cells promote distinct immune responses

July 21, 2011
A new study reveals that just as different soldiers in the field have different jobs, subsets of a type of immune cell that polices the barriers of the body can promote unique and opposite immune responses against the same ...

Recommended for you

Exposure to larger air particles linked to increased risk of asthma in children

December 15, 2017
Researchers at The Johns Hopkins University report statistical evidence that children exposed to airborne coarse particulate matter—a mix of dust, sand and non-exhaust tailpipe emissions, such as tire rubber—are more ...

Bioengineers imagine the future of vaccines and immunotherapy

December 14, 2017
In the not-too-distant future, nanoparticles delivered to a cancer patient's immune cells might teach the cells to destroy tumors. A flu vaccine might look and feel like applying a small, round Band-Aid to your skin.

Immune cells turn back time to achieve memory

December 13, 2017
Memory T cells earn their name by embodying the memory of the immune system - they help the body remember what infections or vaccines someone has been exposed to. But to become memory T cells, the cells go backwards in time, ...

Steroid study sheds light on long term side effects of medicines

December 13, 2017
Fresh insights into key hormones found in commonly prescribed medicines have been discovered, providing further understanding of the medicines' side effects.

The immune cells that help tumors instead of destroying them

December 12, 2017
Lung cancer is the leading cause of cancer-associated deaths. One of the most promising ways to treat it is by immunotherapy, a strategy that turns the patient's immune system against the tumor. In the past twenty years, ...

Cancer gene plays key role in cystic fibrosis lung infections

December 12, 2017
PTEN is best known as a tumor suppressor, a type of protein that protects cells from growing uncontrollably and becoming cancerous. But according to a new study from Columbia University Medical Center (CUMC), PTEN has a second, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.