Discovery of new white blood cell reveals target for better vaccine design

July 27, 2012

Researchers in Newcastle and Singapore have identified a new type of white blood cell which activates a killing immune response to an external source – providing a new potential target for vaccines for conditions such as cancer or Hepatitis B.

Publishing in the journal Immunity, the team of researchers from Newcastle University in collaboration with A*STAR's Singapore Immunology Network (SIgN) describe a new human tissue dendritic cell with cross-presenting function.

Dendritic cells (DCs) are a type of white blood cell that orchestrate our body's immune responses to infectious agents such as bacteria and viruses, as well as cancer cells. They are also very important for eliciting the immune response generated by vaccines.

DCs kick start an immune response by presenting small fragments of molecules from micro-organisms such as bacteria and viruses, or from vaccines or tumours, called antigens on their surface. This leads to activation of another white blood cell subset called T cells, which specialise in killing cells and are crucial for eliminating cancerous or infected cells. Most cells are only able to present antigens from within themselves, and so will only elicit an if they are infected themselves. Only a specialised subset of DCs is able to generate a response to an external source of antigen, for example bacteria, vaccines and tumours.

The identity of human tissue DCs that are capable of presenting external antigen to activate the cell-killing response by T cells - a process termed 'cross-presentation' - has remained a mystery. Their discovery, as revealed by this research, will help scientists to design better targeted vaccine strategies to treat cancer and infections such as Hepatitis B.

"These are the cells we need to be targeting for anti-cancer vaccines," said Dr Muzlifah Haniffa, a Wellcome Trust Intermediate Fellow and Senior Clinical Lecturer at Newcastle University. "Our discovery offers an accessible, easily targetable system which makes the most of the natural ability of the cell."

The researchers also showed for the first time that dendritic cell subsets are conserved between species and have in effect created a map, facilitating the translation of studies to the human immune system.

"The cross-species map is in effect a Rosetta stone that deciphers the language of mouse into human", explains Matthew Collin, Professor of Haematology from Newcastle University.

In the paper the researchers describe how the cross-presenting DCs were first isolated from surplus plastic surgery skin which was digested to melt the gelatinous collagen to isolate the cells.

This research will have significant impact on the design of vaccines and other targeted immunotherapies.

The Rosetta Stone of our immune system: Mapping Human and Mouse dendritic cells

The Newcastle University team in collaboration with A*STAR's Immunology Network (SIgN) have for the first time ever aligned the dendritic cell subsets between mouse and humans allowing the accurate translation of mouse studies into the human model for the first time.

The researchers isolated the dendritic cells from human blood and skin and those from mouse blood, lung and liver. Using gene expression analysis, they identified gene signatures for each human dendritic cell subset. Mouse orthologues of these genes were identified and a computational analysis was performed to match subsets across species.

This provides scientists for the first time with an accurate model to compare DCs between species.

Professor Matthew Collin explains: "This is in effect a Rosetta stone that deciphers the language of mouse into human. It can put into context the findings from the extensive literature using mouse models to the human settings".

Dr. Haniffa added: "These gene signatures are available in a public repository accessible for all researchers to benefit from the data. It will allow detailed knowledge of individual human dendritic cell subsets to enable specific targeting of these for therapeutic strategy."

Explore further: Scientists discover dendritic cells key to activating human immune responses

More information: Human Tissues Contain CD141(hi) Cross-Presenting Dendritic Cells with Functional Homology to Mouse CD103(+) Nonlymphoid Dendritic Cells. Haniffa M, Shin A, Bigley V, McGovern N, Teo P, See P, Wasan PS, Wang XN, Malinarich F, Malleret B, Larbi A, Tan P, Zhao H, Poidinger M, Pagan S, Cookson S, Dickinson R, Dimmick I, Jarrett RF, Renia L, Tam J, Song C, Connolly J, Chan JK, Gehring A, Bertoletti A, Collin M, Ginhoux F. Immunity. 2012.

Related Stories

Scientists discover dendritic cells key to activating human immune responses

July 16, 2012
Scientists at A*STAR’s Singapore Immunology Network (SIgN), in collaboration with Newcastle University, UK, the Singapore Institute of Clinical Sciences and clinicians from multiple hospitals in Singapore, have identified ...

Skin sentry cells promote distinct immune responses

July 21, 2011
A new study reveals that just as different soldiers in the field have different jobs, subsets of a type of immune cell that polices the barriers of the body can promote unique and opposite immune responses against the same ...

Recommended for you

Researchers discover pathway by which blood cells release a potent signalling factor

October 23, 2017
The bloodborne chemical signal sphingosine-1-phosphate (S1P) is released by blood cells to regulate immune and vascular functions. How S1P is released to the circulation was unknown for a long time, until now. On October ...

The skinny on lipid immunology

October 20, 2017
Phospholipids - fat molecules that form the membranes found around cells - make up almost half of the dry weight of cells, but when it comes to autoimmune diseases, their role has largely been overlooked. Recent research ...

Bacterial pathogens outwit host immune defences via stealth mechanisms

October 20, 2017
Despite their relatively small genome in comparison to other bacteria, mycoplasmas can cause persistent and often difficult-to-treat infections in humans and animals. An extensive study by researchers from Vetmeduni Vienna ...

Scientists find where HIV 'hides' to evade detection by the immune system

October 19, 2017
In a decades-long game of hide and seek, scientists from Sydney's Westmead Institute for Medical Research have confirmed for the very first time the specific immune memory T-cells where infectious HIV 'hides' in the human ...

Tracing cell death pathway points to drug targets for brain damage, kidney injury, asthma

October 19, 2017
University of Pittsburgh scientists are unlocking the complexities of a recently discovered cell death process that plays a key role in health and disease, and new findings link their discovery to asthma, kidney injury and ...

Researchers release the brakes on the immune system

October 18, 2017
Many tumors possess mechanisms to avoid destruction by the immune system. For instance, they misuse the natural "brakes" in the immune defense mechanism that normally prevent an excessive immune response. Researchers at the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.