Researchers find new gene mutation associated with congenital myopathy

July 25, 2012

University of Michigan researchers have discovered a new cause of congenital myopathy: a mutation in a previously uncharacterized gene, according to research published this month in the American Journal of Human Genetics.

About 50% of congenital myopathy cases currently do not have a known genetic basis, presenting a clear barrier to understanding disease and developing therapy, says James Dowling, M.D., Ph.D., the paper's co-senior author and assistant professor of Pediatric Neurology at the University of Michigan's C.S. Mott Children's Hospital. Finding a new myopathy gene opens the possibility of providing a for disease in these individuals where no is currently known.

In addition, "the identification of a new myopathy gene is an essential first step towards understanding why this disease occurs and how we combat its effects." says Dowling, who worked with Margit Burmeister, Ph.D. and her team from the University of Michigan's Molecular and Behavioral Neuroscience Institute to study the new myopathy gene (CCDC78).

Dowling says the gene, which has not been studied previously, is an important potential regulator of and, in particular, part of an important called the triad.

"Many myopathies and dystrophies have abnormal triad structure/function, so finding a new involved in its regulation will help researchers better understand the triad and its relationship to ," Dowling says.

Congenital myopathies are clinically and genetically heterogeneous diseases that typically become evident in childhood with hypotonia and weakness. They are associated with impaired mobility, progressive scoliosis, chronic respiratory failure and often early death.

Currently there are no known treatments or disease modifying therapies for congenital myopathies.

The researchers performed linkage analysis followed by whole exome capture and next generation sequencing in a family with congenital myopathy. They then validated the gene mutation and provided insights into the disease pathomechanisms using the zebrafish model system.

Dowling says the researchers' next step is to further model the disease using zebrafish, in the hopes that this knowledge can be translated into therapy development.

"The study provides the first descriptions of the zebrafish model, and gives insight into how we will use it," says Dowling, who also is director of the Pediatric Neuromuscular Disorders Clinic at C.S. Mott Children's Hospital.

"Once we develop and characterize a model of the disease, we can then use it as a platform for therapy development."

More information: Journal reference: AJHG-D-12-00101R4

Related Stories

Recommended for you

Newly revealed autism-related genes include genes involved in cancer

September 25, 2017
The identification of genes related to autism spectrum disorder (ASD) could help to better understand the disorder and develop new treatments. While scientists have found many genetic differences in different people with ...

Scientists first to use genetic engineering technique to investigate Tourette's

September 25, 2017
Scientists at Rutgers University-New Brunswick are the first to use a genetic engineering technique to create brain cells from the blood cells of individuals in a three-generation family with Tourette syndrome to help determine ...

Study reveals an ancient Achilles heel in the human genome

September 21, 2017
In a major study published today, researchers at deCODE genetics use whole-genome data from 14,000 people from across the population of Iceland, including 1500 sets of parents and children, to provide the most detailed portrait ...

Forgotten strands of DNA initiate the development of immune cells

September 21, 2017
Intricate human physiological features such as the immune system require exquisite formation and timing to develop properly. Genetic elements must be activated at just the right moment, across vast distances of genomic space.

Genome editing reveals role of gene important for human embryo development

September 20, 2017
Researchers have used genome editing technology to reveal the role of a key gene in human embryos in the first few days of development. This is the first time that genome editing has been used to study gene function in human ...

A piece of the puzzle: Eight autism-related mutations in one gene

September 19, 2017
Scientists have identified a hotspot for autism-related mutations in a single gene.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.