How malaria evades the body's immune response

July 12, 2012 By Helen Dodson

(Medical Xpress) -- The parasites that cause human malaria and make it particularly lethal have a unique ability to evade destruction by the body’s immune system, diminishing its ability to develop immunity and fight the infection, a Yale study has found. The study appears in the Online Early Edition of the Proceedings of the National Academy of Sciences.

One of the biggest problems in controlling malaria in regions of high transmission, where it continues to account for over one million deaths yearly, is that protective immunity against re-infection does not occur. It is believed that inadequate formation and maintenance of infection-fighting memory T-cells are at the root of this immune malfunction. This phenomenon also frustrates efforts to develop effective malaria vaccines.

It’s known that malaria causes a highly inflammatory response in infected individuals that leads to the deadly clinical complications of anemia and cerebral disease. The Yale research team learned that the produce their own version of a human cytokine, or immune hormone, which directs the inflammatory response during malaria. They also discovered that this cytokine, called PMIF, incapacitates the anti-malaria, memory T-cell immune response.

Using a genetically modified strain of the malaria parasite in mice, the Yale team found that PMIF causes host T-cells to develop into short-lived effector cells rather than protective memory cells. The short-lived cells die during the infection, and the long-lived memory T-cells are not produced in adequate numbers to combat the infection or to protect from re-infection, which occurs repeatedly in malaria-endemic regions. 

“These findings indicate that malaria parasites actively interfere with the development of immunological , and may account for the inhibition of protective immune responses in human ,” said Rick Bucala, M.D., professor of internal medicine, pathology, and epidemiology and public health at Yale School of Medicine. “This knowledge will help us identify specific therapies that can protect anti-malarial T-cells from death and improve an individual’s immune response to infection or to vaccination.”

Explore further: Breakthrough in malaria research looks to body's immune cells

More information: PNAS paper: www.pnas.org/content/early/201 … 573109.full.pdf+html

The published work was the graduate thesis of Yale student Tiffany Sun. Additional authors are Thomas Holowka, Yan Song, Swen Zierow, Lin Leng, Jason Griffith and Elias Lolis of Yale; Yibang Chen and Huabao Xiong of Mount Sinai School of Medicine; Mehdi Nouraie and Victor R. Gordeuk of Howard University; Philip E. Thuma of the Malaria Institute at Macha, Zambia; Chris J. Janse and Kevin Augustijn of Leiden University, The Netherlands.
The research was supported by the National Science Foundation, the National Institutes of Health, and the Netherlands Organization for Scientific Research.

Related Stories

Breakthrough in malaria research looks to body's immune cells

November 25, 2011
Groundbreaking research from the Queensland Institute of Medical Research is set to pave the way for the development of new malaria drugs and vaccines.

Malaria parasites camouflage themselves from the immune defenses of expectant mothers

August 19, 2011
Collaborative research between Liverpool School of Tropical Medicine and the University of Copenhagen, published last week in the Proceedings of the National Academy of Sciences, have answered a long standing mystery, why ...

Novel treatment protects mice against malaria; approach may work in humans as well

October 26, 2011
Malaria is a major global health concern, and researchers are in need of new therapeutic approaches. To address this concern, a study published Oct. 26 in the online journal PLoS ONE reveals new information about the host ...

Malaria vaccination strategy provides model for superior protection

June 15, 2011
Malaria is a devastating disease caused by the Plasmodium parasite which is transmitted to humans by infected mosquitoes. Hundreds of millions of new cases of malaria are reported each year, and there are more than 750,000 ...

Malaria parasites use camouflage to trick immune defences of pregnant women

July 11, 2011
Copenhagen University Hospital and the University of Copenhagen have discovered why malaria parasites are able to hide from the immune defences of expectant mothers, allowing the parasite to attack the placenta. The discovery ...

Recommended for you

Immune system can be modulated by targeted manipulation of cell metabolism

August 21, 2017
In its attempt to fight a serious bacterial infection, caused by listeria, for example, the immune system can become so over-activated that the resulting inflammatory response and its consequences can quickly lead to death. ...

Australian researchers in peanut allergy breakthrough

August 17, 2017
Australian researchers have reported a major breakthrough in the relief of deadly peanut allergy with the discovery of a long-lasting treatment they say offers hope that a cure will soon be possible.

Genetic variants found to play key role in human immune system

August 16, 2017
It is widely recognized that people respond differently to infections. This can partially be explained by genetics, shows a new study published today in Nature Communications by an international collaboration of researchers ...

Study identifies a new way to prevent a deadly fungal infection spreading to the brain

August 16, 2017
Research led by the University of Birmingham has discovered a way to stop a deadly fungus from 'hijacking' the body's immune system and spreading to the brain.

Biophysics explains how immune cells kill bacteria

August 16, 2017
(Tokyo, August 16) A new data analysis technique, moving subtrajectory analysis, designed by researchers at Tokyo Institute of Technology, defines the dynamics and kinetics of key molecules in the immune response to an infection. ...

How a nutrient, glutamine, can control gene programs in cells

August 15, 2017
The 200 different types of cells in the body all start with the same DNA genome. To differentiate into families of bone cells, muscle cells, blood cells, neurons and the rest, differing gene programs have to be turned on ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.