How malaria evades the body's immune response

July 12, 2012 By Helen Dodson

(Medical Xpress) -- The parasites that cause human malaria and make it particularly lethal have a unique ability to evade destruction by the body’s immune system, diminishing its ability to develop immunity and fight the infection, a Yale study has found. The study appears in the Online Early Edition of the Proceedings of the National Academy of Sciences.

One of the biggest problems in controlling malaria in regions of high transmission, where it continues to account for over one million deaths yearly, is that protective immunity against re-infection does not occur. It is believed that inadequate formation and maintenance of infection-fighting memory T-cells are at the root of this immune malfunction. This phenomenon also frustrates efforts to develop effective malaria vaccines.

It’s known that malaria causes a highly inflammatory response in infected individuals that leads to the deadly clinical complications of anemia and cerebral disease. The Yale research team learned that the produce their own version of a human cytokine, or immune hormone, which directs the inflammatory response during malaria. They also discovered that this cytokine, called PMIF, incapacitates the anti-malaria, memory T-cell immune response.

Using a genetically modified strain of the malaria parasite in mice, the Yale team found that PMIF causes host T-cells to develop into short-lived effector cells rather than protective memory cells. The short-lived cells die during the infection, and the long-lived memory T-cells are not produced in adequate numbers to combat the infection or to protect from re-infection, which occurs repeatedly in malaria-endemic regions. 

“These findings indicate that malaria parasites actively interfere with the development of immunological , and may account for the inhibition of protective immune responses in human ,” said Rick Bucala, M.D., professor of internal medicine, pathology, and epidemiology and public health at Yale School of Medicine. “This knowledge will help us identify specific therapies that can protect anti-malarial T-cells from death and improve an individual’s immune response to infection or to vaccination.”

Explore further: Breakthrough in malaria research looks to body's immune cells

More information: PNAS paper: www.pnas.org/content/early/201 … 573109.full.pdf+html

The published work was the graduate thesis of Yale student Tiffany Sun. Additional authors are Thomas Holowka, Yan Song, Swen Zierow, Lin Leng, Jason Griffith and Elias Lolis of Yale; Yibang Chen and Huabao Xiong of Mount Sinai School of Medicine; Mehdi Nouraie and Victor R. Gordeuk of Howard University; Philip E. Thuma of the Malaria Institute at Macha, Zambia; Chris J. Janse and Kevin Augustijn of Leiden University, The Netherlands.
The research was supported by the National Science Foundation, the National Institutes of Health, and the Netherlands Organization for Scientific Research.

Related Stories

Breakthrough in malaria research looks to body's immune cells

November 25, 2011
Groundbreaking research from the Queensland Institute of Medical Research is set to pave the way for the development of new malaria drugs and vaccines.

Malaria parasites camouflage themselves from the immune defenses of expectant mothers

August 19, 2011
Collaborative research between Liverpool School of Tropical Medicine and the University of Copenhagen, published last week in the Proceedings of the National Academy of Sciences, have answered a long standing mystery, why ...

Novel treatment protects mice against malaria; approach may work in humans as well

October 26, 2011
Malaria is a major global health concern, and researchers are in need of new therapeutic approaches. To address this concern, a study published Oct. 26 in the online journal PLoS ONE reveals new information about the host ...

Malaria vaccination strategy provides model for superior protection

June 15, 2011
Malaria is a devastating disease caused by the Plasmodium parasite which is transmitted to humans by infected mosquitoes. Hundreds of millions of new cases of malaria are reported each year, and there are more than 750,000 ...

Malaria parasites use camouflage to trick immune defences of pregnant women

July 11, 2011
Copenhagen University Hospital and the University of Copenhagen have discovered why malaria parasites are able to hide from the immune defences of expectant mothers, allowing the parasite to attack the placenta. The discovery ...

Recommended for you

Gene immunotherapy protects against multiple sclerosis in mice

September 21, 2017
A potent and long-lasting gene immunotherapy approach prevents and reverses symptoms of multiple sclerosis in mice, according to a study published September 21st in the journal Molecular Therapy. Multiple sclerosis is an ...

New academic study reveals true extent of the link between hard water and eczema

September 21, 2017
Hard water damages our protective skin barrier and could contribute to the development of eczema, a new study has shown.

Exposure to pet and pest allergens during infancy linked to reduced asthma risk

September 19, 2017
Children exposed to high indoor levels of pet or pest allergens during infancy have a lower risk of developing asthma by 7 years of age, new research supported by the National Institutes of Health reveals. The findings, published ...

MicroRNA helps cancer evade immune system

September 18, 2017
The immune system automatically destroys dysfunctional cells such as cancer cells, but cancerous tumors often survive nonetheless. A new study by Salk scientists shows one method by which fast-growing tumors evade anti-tumor ...

'Exciting' discovery on path to develop new type of vaccine to treat global viruses

September 15, 2017
Scientists at the University of Southampton have made a significant discovery in efforts to develop a vaccine against Zika, dengue and Hepatitis C viruses that affect millions of people around the world.

Regular exercise, stress can both make a big difference in lupus, study finds

September 13, 2017
Waking up in the morning with the joint pain, swelling and stiffness that accompanies lupus doesn't exactly inspire a workout.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.