miR loss may power maligant transformation in chronic leukemia

July 5, 2012, Ohio State University Medical Center

Loss of a particular microRNA in chronic lymphocytic leukemia shuts down normal cell metabolism and turns up alternative mechanisms that enable cancer cells to produce the energy and build the molecules they need to proliferate and invade neighboring tissue.

The findings come from a new study led by researchers at the Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC – James).

The study shows that -125b (miR-125b) by itself regulates many enzymes and other that allow cells to make building blocks needed for their growth and proliferation such as DNA and lipids needed for cell membranes.

It also shows that miR-125b is often lost in (CLL), and that the loss is associated with higher rates of glucose metabolism. This is a characteristic of called the Warburg effect, and it alters how cancer cells use sugar (glucose) to generate energy. This finding suggests that loss of miR-125b is an early step in CLL development.

The findings, published in the journal Blood, provide a more comprehensive understanding of how cancer develops and identifies new potential targets for CLL drug development, the researchers say.

"Our findings indicate that miR-125b is downregulated in both aggressive and indolent forms of CLL, and that this downregulation is associated with metabolic adaptation to cancer transformation," says principal investigator and corresponding author Dr. Carlo Croce, director of Ohio State's Human Cancer Genetics program and a member of the OSUCCC – James Molecular Biology and Cancer Genetics program.

"By identifying the metabolites that are changed, as we have here, we can propose to use drugs that target them and perhaps control the ," Croce says.

Scientists have known for some time that, as normal cells become cancer cells, different metabolic pathways are switched on and support the enhanced growth and energy needs that malignant cells require. This study reveals one new way that that can happen.

"The power of microRNAs is that they simultaneously control the expression of many genes, usually by suppressing them," says co-corresponding author Esmerina Tili, who is also first author and a post-doctoral researcher in Croce's laboratory.

"We believe miR-125b is a master regulator of , and that its loss enhances metabolism and leads to a transformed state," Tili says. "As the level of miR-125b goes down in CLL cells, the levels of many of the molecules it controls go up, enabling rapid cell growth."

These molecules, along with miR-125b itself, warrant further investigation as possible targets for new drugs to control CLL progression, she says.

"Cancer is a complex disease," Croce says. "The more we know about the changes that occur when cells become malignant, the better therapies we can design."

Explore further: Agent selectively targets malignant B cells in chronic leukemia, study shows

Related Stories

Agent selectively targets malignant B cells in chronic leukemia, study shows

May 3, 2011
A new experimental drug selectively kills the cancerous cells that cause chronic lymphocytic leukemia, according to a new study by researchers at the Ohio State University Comprehensive Cancer Center – Arthur G. James ...

Study reveals mechanism of lung-cancer drug resistance

January 19, 2012
New research published in Nature Medicine indicates that targeted drugs such as gefitinib might more effectively treat non-small cell lung cancer if they could be combined with agents that block certain microRNAs.

Recommended for you

New approach attacks 'undruggable' cancers from the outside in

January 23, 2018
Cancer researchers have made great strides in developing targeted therapies that treat the specific genetic mutations underlying a patient's cancer. However, many of the most common cancer-causing genes are so central to ...

Study: Cells of three advanced cancers die with drug-like compounds that reverse chemo failure

January 23, 2018
Researchers at Southern Methodist University have discovered three drug-like compounds that successfully reverse chemotherapy failure in three of the most commonly aggressive cancers—ovarian, prostate and breast.

'Hijacker' drives cancer in some patients with high-risk neuroblastoma

January 23, 2018
Researchers have identified mechanisms that drive about 10 percent of high-risk neuroblastoma cases and have used a new approach to show how the cancer genome "hijacks" DNA that regulates other genes. The resulting insights ...

Enzyme inhibitor combined with chemotherapy delays glioblastoma growth

January 23, 2018
In animal experiments, a human-derived glioblastoma significantly regressed when treated with the combination of an experimental enzyme inhibitor and the standard glioblastoma chemotherapy drug, temozolomide.

Researchers identify a protein that keeps metastatic breast cancer cells dormant

January 23, 2018
A study headed by ICREA researcher Roger Gomis at the Institute for Research in Biomedicine (IRB Barcelona) has identified the genes involved in the latent asymptomatic state of breast cancer metastases. The work sheds light ...

Boosting cancer therapy with cross-dressed immune cells

January 22, 2018
Researchers at EPFL have created artificial molecules that can help the immune system to recognize and attack cancer tumors. The study is published in Nature Methods.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.