miR loss may power maligant transformation in chronic leukemia

July 5, 2012

Loss of a particular microRNA in chronic lymphocytic leukemia shuts down normal cell metabolism and turns up alternative mechanisms that enable cancer cells to produce the energy and build the molecules they need to proliferate and invade neighboring tissue.

The findings come from a new study led by researchers at the Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC – James).

The study shows that -125b (miR-125b) by itself regulates many enzymes and other that allow cells to make building blocks needed for their growth and proliferation such as DNA and lipids needed for cell membranes.

It also shows that miR-125b is often lost in (CLL), and that the loss is associated with higher rates of glucose metabolism. This is a characteristic of called the Warburg effect, and it alters how cancer cells use sugar (glucose) to generate energy. This finding suggests that loss of miR-125b is an early step in CLL development.

The findings, published in the journal Blood, provide a more comprehensive understanding of how cancer develops and identifies new potential targets for CLL drug development, the researchers say.

"Our findings indicate that miR-125b is downregulated in both aggressive and indolent forms of CLL, and that this downregulation is associated with metabolic adaptation to cancer transformation," says principal investigator and corresponding author Dr. Carlo Croce, director of Ohio State's Human Cancer Genetics program and a member of the OSUCCC – James Molecular Biology and Cancer Genetics program.

"By identifying the metabolites that are changed, as we have here, we can propose to use drugs that target them and perhaps control the ," Croce says.

Scientists have known for some time that, as normal cells become cancer cells, different metabolic pathways are switched on and support the enhanced growth and energy needs that malignant cells require. This study reveals one new way that that can happen.

"The power of microRNAs is that they simultaneously control the expression of many genes, usually by suppressing them," says co-corresponding author Esmerina Tili, who is also first author and a post-doctoral researcher in Croce's laboratory.

"We believe miR-125b is a master regulator of , and that its loss enhances metabolism and leads to a transformed state," Tili says. "As the level of miR-125b goes down in CLL cells, the levels of many of the molecules it controls go up, enabling rapid cell growth."

These molecules, along with miR-125b itself, warrant further investigation as possible targets for new drugs to control CLL progression, she says.

"Cancer is a complex disease," Croce says. "The more we know about the changes that occur when cells become malignant, the better therapies we can design."

Explore further: Agent selectively targets malignant B cells in chronic leukemia, study shows

Related Stories

Agent selectively targets malignant B cells in chronic leukemia, study shows

May 3, 2011
A new experimental drug selectively kills the cancerous cells that cause chronic lymphocytic leukemia, according to a new study by researchers at the Ohio State University Comprehensive Cancer Center – Arthur G. James ...

Study reveals mechanism of lung-cancer drug resistance

January 19, 2012
New research published in Nature Medicine indicates that targeted drugs such as gefitinib might more effectively treat non-small cell lung cancer if they could be combined with agents that block certain microRNAs.

Recommended for you

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

Novel CRISPR-Cas9 screening enables discovery of new targets to aid cancer immunotherapy

July 19, 2017
A novel screening method developed by a team at Dana-Farber/Boston Children's Cancer and Blood Disorders Center—using CRISPR-Cas9 genome editing technology to test the function of thousands of tumor genes in mice—has ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.