Do ovaries continue to produce eggs during adulthood?

July 26, 2012

A compelling new genetic study tracing the origins of immature egg cells, or 'oocytes', from the embryonic period throughout adulthood adds new information to a growing controversy. The notion of a "biological clock" in women arises from the fact that oocytes progressively decline in number as females get older, along with a decades-old dogmatic view that oocytes cannot be renewed in mammals after birth. After careful assessment of data from a recent study published in PLoS Genetics, scientists from Massachusetts General Hospital and the University of Edinburgh argue that the findings support formation of new eggs during adult life; a topic that has been historically controversial and has sparked considerable debate in recent years.

Eggs are formed from progenitor germ cells that exit the mitotic cycle, thereby ending their ability to proliferate through cell division, and subsequently enter meiosis, a process unique to the formation of eggs and sperm which removes one half of the genetic material from each type of cell prior to fertilization.

While traditional thinking has held that female mammals are born with all of the eggs they will ever have, newer research has demonstrated that adult mouse and human ovaries contain a rare population of progenitor germ cells called oogonial stem cells capable of dividing and generating new . Using a powerful new that traces the number of divisions a cell has undergone with age (its 'depth') Shapiro and colleagues counted the number of times progenitor germ cells divided before becoming oocytes; their study was published in PLoS Genetics in February this year.

If traditional thinking held true, all divisions would have occurred prior to birth, and thus all oocytes would exhibit the same depth regardless of age. However, the opposite was found – eggs showed a progressive increase in depth as the female mice grew older.

In their assessment of the work by Shapiro and colleagues – published recently in a Perspective article – reproductive biologists Dori Woods, Evelyn Telfer and Jonathan Tilly conclude that the most plausible explanation for these findings is that progenitor in ovaries continue to divide throughout reproductive life, resulting in production of new oocytes with greater depth as animals age.

Although these investigations were performed in mice, there is emerging evidence that oogonial stem cells are also present in the ovaries of reproductive-age women, and these cells possess the capacity, like their mouse counterparts, to generate new oocytes under certain experimental conditions. While more work is needed to settle the debate over the significance of oocyte renewal in adult mammals, Woods and colleagues emphasize that "the recent work of Shapiro and colleagues is one of the first reports to offer experimental data consistent with a role for postnatal oocyte renewal in contributing to the reserve of ovarian follicles available for use in adult females as they age."

Explore further: Scientists isolate egg-producing stem cells from adult human ovaries

More information: Woods DC, Telfer EE, Tilly JL (2012) Oocyte Family Trees: Old Branches or New Stems? PLOS Genet 8(7): e1002848. doi:10.1371/journal.pgen.1002848

Related Stories

Scientists isolate egg-producing stem cells from adult human ovaries

February 26, 2012
For the first time, Massachusetts General Hospital (MGH) researchers have isolated egg-producing stem cells from the ovaries of reproductive age women and shown these cells can produce what appear to be normal egg cells or ...

Making sperm from stem cells in a dish

August 4, 2011
Researchers have found a way to turn mouse embryonic stem cells into sperm. This finding, reported in the journal Cell in a special online release on August 4th, opens up new avenues for infertility research and treatment. ...

Recommended for you

Genome editing reveals role of gene important for human embryo development

September 20, 2017
Researchers have used genome editing technology to reveal the role of a key gene in human embryos in the first few days of development. This is the first time that genome editing has been used to study gene function in human ...

A piece of the puzzle: Eight autism-related mutations in one gene

September 19, 2017
Scientists have identified a hotspot for autism-related mutations in a single gene.

Scientists identify key regulator of male fertility

September 19, 2017
When it comes to male reproductive fertility, timing is everything. Now scientists are finding new details on how disruption of this timing may contribute to male infertility or congenital illness.

New assay leads to step toward gene therapy for deaf patients

September 18, 2017
Scientists at Oregon State University have taken an important step toward gene therapy for deaf patients by developing a way to better study a large protein essential for hearing and finding a truncated version of it.

Genomic recycling: Ancestral genes take on new roles

September 18, 2017
One often hears about the multitude of genes we have in common with chimps, birds or other living creatures, but such comparisons are sometimes misleading. The shared percentage usually refers only to genes that encode instructions ...

Biologists identify gene involved in kidney-related birth defects

September 18, 2017
A team led by University of Iowa researchers has identified a gene linked to rare, often fatal kidney-related birth defects.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.