Scientists first to see trafficking of immune cells in beating heart

July 11, 2012
Working in mice, scientists at Washington University School of Medicine in St. Louis have used two-photon imaging to capture the first images of a beating heart at a resolution so detailed they can track individual immune cells swarming into the heart, causing inflammation. These immune cells, shown in green, are moving from the blood vessels in the heart into the heart muscle. Credit: Washington University in St. Louis

Blood flow to the heart often is interrupted during a heart attack or cardiac surgery. But when blood flow resumes, the heart may still falter. That's because collateral damage can occur as blood re-enters the heart, potentially slowing recovery and causing future cardiac troubles.

Researchers investigating this type of secondary have been stymied by the inability to see in real time how restoring leads to inflammation that can cause further injury. Now, working in mice, surgeons and scientists at Washington University School of Medicine in St. Louis, have captured the first images of a at a resolution so detailed they can track individual swarming into the , causing inflammation.

The achievement is detailed in the July issue of the .

The researchers say that the imaging technique, called intravital two-photon imaging, is a powerful tool for understanding the inflammation that occurs when blood flow to the heart is temporarily stopped and later restarted.

"Inflammation is quite common after a , open-heart surgery, heart transplants and in atherosclerosis, and it can severely hamper recovery and lead to death," says senior author Daniel Kreisel, MD, PhD, a Washington University who operates at Barnes-Jewish Hospital. "But little is known about how inflammation ramps up in the heart. Now that we have the ability to see all the cellular players involved, we can begin to think about new therapeutic targets for treatment."

Two-photon imaging has been used to image other organs in living mice but never the heart. Scientists had assumed that the flutter of the beating heart, which pulses about 500 times a minute in a mouse, would blur any images of individual cells.

"No one thought we could get clear images of cells inside the beating heart," says Wenjun Li, MD, research instructor of surgery and co-lead author with Ruben Nava, MD, and Alejandro Bribriesco, MD, both surgical residents at Barnes-Jewish Hospital. "But the images we captured are incredibly rich in detail, right down to the level of single cells. We think the principles underlying inflammation in the mouse heart will be applicable to humans."

One advantage of two-photon microscopy is the ability to penetrate deep into tissue, allowing scientists to image cells in the heart tissue.

Using the technique in mice that had undergone or had a blood flow to the heart temporarily interrupted, the researchers saw that within minutes of restoring blood flow, specialized white blood cells, called neutrophils, rushed into the heart. (To see a video of neutrophils, shown in green, swarming into the beating heart of a mouse after a heart transplant, click here.)

Neutrophils are known to be a key driver of inflammation but scientists had never seen the trafficking of immune cells as they move from the circulation into the heart muscle, where the cells formed large clusters that cause tissue damage.

In addition, by blocking neutrophils from blood vessel walls, the researchers could markedly reduce the movement of these cells into the heart, preventing further injury.

Kreisel, Li and their colleagues collaborated with co-senior author Mark Miller, PhD, an assistant professor of pathology and immunology, who pioneered the use of two-photon microscopy for studying the trafficking of white blood cells in living mice. Together, they developed a way to stabilize the beating heart so they could obtain high-quality images of immune cell trafficking.

The same team also has used the technique to image immune cells in mouse lungs, which also move as the mice breathe but not to the same extent as the heart. And other scientists have used two-photon imaging to watch neutrophils travel into the skin, liver and other organs. Surprisingly, the researchers are finding that the trafficking of neutrophils differs from one organ to the next.

"Each organ seems to have its own requirements for signaling and attracting inflammatory cells," says Kreisel, who also is an associate professor of surgery. "It is as if each organ has its own zip code. Now, we have the ability to identify all the cells and signaling molecules that play a part in inflammation and can block particular pathways to see if we can prevent organ damage."

Explore further: Study shows man-made fat may limit damage to heart attack victims

Related Stories

Study shows man-made fat may limit damage to heart attack victims

August 5, 2011
A man-made fat called Intralipid, which is currently used as a component of intravenous nutrition and to treat rare overdoses of local anesthetics, may also offer protection for patients suffering from heart attacks.

Rogue blood cells may contribute to post-surgery organ damage

June 26, 2011
A study from scientists at Queen Mary, University of London, sheds new light on why people who experience serious trauma or go through major surgery, can suffer organ damage in parts of the body which are seemingly unconnected ...

Depressed heart function from stress improved by a simple sugar

July 19, 2011
Enhancing the production of ATP (adenosine triphosphate), an energy carrying molecule in heart cells, may shorten the heart’s recovery time after a heart attack or heart surgery.

Protein modified by researchers may reduce heart attack damage

March 1, 2012
Scientists modified a protein in the heart which dramatically reduced cell damage after heart attacks, according to new research published the American Heart Association journal Arteriosclerosis, Thrombosis and Vascular Biology.

Recommended for you

'Human chronobiome' study informs timing of drug delivery, precision medicine approaches

December 13, 2017
Symptoms and efficacy of medications—and indeed, many aspects of the human body itself—vary by time of day. Physicians tell patients to take their statins at bedtime because the related liver enzymes are more active during ...

Estrogen discovery could shed new light on fertility problems

December 12, 2017
Estrogen produced in the brain is necessary for ovulation in monkeys, according to researchers at the University of Wisconsin-Madison who have upended the traditional understanding of the hormonal cascade that leads to release ...

Time of day affects severity of autoimmune disease

December 12, 2017
Insights into how the body clock and time of day influence immune responses are revealed today in a study published in leading international journal Nature Communications. Understanding the effect of the interplay between ...

3-D printed microfibers could provide structure for artificially grown body parts

December 12, 2017
Much as a frame provides structural support for a house and the chassis provides strength and shape for a car, a team of Penn State engineers believe they have a way to create the structural framework for growing living tissue ...

Team identifies DNA element that may cause rare movement disorder

December 11, 2017
A team of Massachusetts General Hospital (MGH) researchers has identified a specific genetic change that may be the cause of a rare but severe neurological disorder called X-linked dystonia parkinsonism (XDP). Occurring only ...

Protein Daple coordinates single-cell and organ-wide directionality in the inner ear

December 11, 2017
Humans inherited the capacity to hear sounds thanks to structures that evolved millions of years ago. Sensory "hair cells" in the inner ear have the amazing ability to convert sound waves into electrical signals and transmit ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.