Researchers moving towards ending threat of West Nile virus

July 3, 2012

Mosquitoes are buzzing once again, and with that comes the threat of West Nile virus. Tom Hobman, a researcher with the Li Ka Shing Institute of Virology in the Faculty of Medicine & Dentistry, is making every effort to put an end to this potentially serious infection.

infections often result in flu-like symptoms that aren't life-threatening, and some in cases, infected people show no symptoms at all. But a significant percentage of patients develop serious neurological disease that includes inflammation in the brain, paralysis and seizures. In his latest research, published in the journal PLoS One, Hobman has discovered how the breaks through the normally rock-solid blood-brain barrier to the central nervous system. The virus breaks down two vital proteins that make up what is called the tight junction, a part of the blood-brain barrier.

"What we found in infected cells is there's less of two proteins called claudin and JAM (junctional adhesion molecule)," said Hobman. "The virus replication is causing degradation of two very important molecules that form these intra-cellular barriers. We can quantitate this and we've looked in at least three different cell types and we see the same thing happening."

Now Hobman and his graduate student Zaikun Xu would like to know how this is happening. Cells have built in pathways that regulate tight junctions, in part by controlling the levels of both JAM and claudin. Hobman hypothesizes that West Nile virus infection causes these pathways to go awry – resulting in accelerated breakdown of claudin and JAM.

"Once we understand how West Nile virus affects the pathways that control the tight junctions of the blood-brain barrier, it may be possible to design drugs that prevent infection of the brain. I expect this will also be the case for related viruses that infect the central nervous system."

This builds on work his lab published last year showing that when they inhibited the expression of a specific cellular protein, infectivity of the West Nile virus went down by more than 100 times.

Related Stories

Recommended for you

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.