Zebrafish reveal promising mechanism for healing spinal cord injury

July 6, 2012

Scientists in Australia are studying the mechanisms of spinal cord repair in zebrafish, which unlike humans and other mammals can regenerate their spinal cord following injury. Their findings suggest a family of molecules called fibroblast growth factors could be a therapeutic target for encouraging nerve regeneration.

Yona Goldshmit, Ph.D., is a former physical therapist who worked in rehabilitation centers with spinal cord injury patients for many years before deciding to switch her focus to the underlying science.

"After a few years in the clinic, I realized that we don't really know what's going on," she said.

Now a scientist working with Peter Currie, Ph.D., at Monash University in Australia, Dr. Goldshmit is studying the mechanisms of in zebrafish, which, unlike humans and other mammals, can regenerate their spinal cord following injury. On June 23 at the 2012 International Zebrafish Development and Genetics Conference in Madison, Wisconsin, she described a protein that may be a key difference between regeneration in fish and mammals.

One of the major barriers to spinal regeneration in mammals is a natural , which incongruously results in an unfortunate side effect. After a spinal injury, called glia are activated and flood the area to seal the wound to protect the brain and spinal cord. In doing so, however, the glia create scar tissue that acts as a physical and chemical barrier, which prevents new nerves from growing through the injury site.

One striking difference between the in mammals and fish is the resulting shape: mammalian glia take on highly branched, star-like arrangements that appear to intertwine into dense tissue. Fish glia cells, by contrast, adopt a simple elongated shape – called bipolar morphology – that bridges the injury site and appears to help new nerve cells grow through the damaged area to heal the spinal cord.

"Zebrafish don't have so much inflammation and the injury is not so severe as in mammals, so we can actually see the pro-regenerative effects that can happen," Dr. Goldshmit explained.

Studies in mice have found that mammalian glia can take up the same elongated shape, but in response to the environment around the injury they instead mature into that does not allow nerve regrowth.

Dr. Goldshmit and her colleagues have focused on a family of molecules called fibroblast (Fgf), which have shown some evidence of improving recovery in mice and humans with spinal cord damage. The Monash University group found that Fgf activity around the damage site promotes the bipolar glial shape and encourages in zebrafish.

Preliminary results in mice show that Fgf injections near a spinal injury increase both the number of glia cells at the site and the elongated morphology. Their evidence suggests that Fgfs may work to create an environment more supportive of regeneration in mammals as well and could be a valuable .

Spinal injury patients usually have few options, Dr. Goldshmit emphasized, and development of new, biologically-based approaches will be critical.

"This is a nice example of how we can use the zebrafish model," she said. "When we learn from the zebrafish what to look at, we can find things that give us hope for finding therapeutic approaches for spinal cord injury in humans."

Explore further: Fish study raises hope for spinal injury repair

Related Stories

Fish study raises hope for spinal injury repair

May 30, 2012
(Medical Xpress) -- Scientists have unlocked the secrets of the zebra fish’s ability to heal its spinal cord after injury, in research that could deliver therapy for paraplegics and quadriplegics in the future.

Research offers hope in new treatment for spinal cord injuries

May 3, 2011
Rutgers researchers have developed an innovative new treatment that could help minimize nerve damage in spinal cord injuries, promote tissue healing and minimize pain.

Unexpected cell repairs injured spinal cord

July 7, 2011
Lesions to the brain or spinal cord rarely heal fully, which leads to permanent functional impairment. After injury to the central nervous system (CNS), neurons are lost and largely replaced by a scar often referred to as ...

Evidence for spinal membrane as a source of stem cells may advance spinal cord treatment

October 28, 2011
Italian and Spanish scientists studying the use of stem cells for treating spinal cord injuries have provided the first evidence to show that meninges, the membrane which envelops the central nervous system, is a potential ...

Spinal cord treatment offers hope

November 18, 2011
Queensland University of Technology (QUT) researchers have developed a promising new treatment for spinal cord injury in animals, which could eventually prevent paralysis in thousands of people worldwide every year.

Recommended for you

New assay leads to step toward gene therapy for deaf patients

September 18, 2017
Scientists at Oregon State University have taken an important step toward gene therapy for deaf patients by developing a way to better study a large protein essential for hearing and finding a truncated version of it.

Biologists identify gene involved in kidney-related birth defects

September 18, 2017
A team led by University of Iowa researchers has identified a gene linked to rare, often fatal kidney-related birth defects.

Genomic recycling: Ancestral genes take on new roles

September 18, 2017
One often hears about the multitude of genes we have in common with chimps, birds or other living creatures, but such comparisons are sometimes misleading. The shared percentage usually refers only to genes that encode instructions ...

A new approach to high insulin levels

September 18, 2017
Diabetes is characterised by a deficiency of insulin. Its opposite is a condition called congenital hyperinsulinism—patients produce the hormone too frequently and in excessive quantities, even if they haven't eaten any ...

Why we did not evolve to live forever: Unveiling the mystery of why we age

September 15, 2017
Researchers at the Institute of Molecular Biology (IMB) in Mainz, Germany, have made a breakthrough in understanding the origin of the ageing process. They have identified that genes belonging to a process called autophagy ...

Researchers uncover mechanism behind calorie restriction and lengthened lifespan

September 14, 2017
Almost a century ago, scientists discovered that cutting calorie intake could dramatically extend lifespan in certain animal species. Despite numerous studies since, however, researchers have been unable to explain precisely ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.