Shining light on amyloid protein nanostructures

August 14, 2012
UT Research on cover of Angewandte Chemie
The research team recently published their results in the leading scientific journal Angewandte Chemie, which highlighted this work on the cover of the journal.

Scientists from the MESA+ and MIRA research institutes at the University of Twente have developed a new method to gain insight into the composition of large macromolecular protein assemblies. Their method allows the determination of the composition of potentially toxic amyloid protein assemblies involved in many human neurodegenerative diseases. The research team recently published their results in the leading scientific journal Angewandte Chemie, which highlighted this work on the cover of the journal.

Many human , such as Parkinson’s disease, Alzheimer’s disease, or Huntington’s disease, are the result of protein misfolding. As a result of this misfolding, the monomeric proteins can aggregate and form small protein clumps, so-called oligomers. These oligomers are thought to be key players in the disease process. However, obtaining information about the exact , that is, the number of monomeric proteins that form one oligomer, remains very challenging, while this is essential information for understanding the disease process.

Single-molecule photobleaching and sub-stoichiometric labeling

The research team has developed a new method to determine the composition of these oligomers. Combining single-molecule photobleaching techniques with sub-stoichiometric fluorophore labeling gave insights into the number of monomers that form a protein oligomer. Single-molecule photobleaching uses ultrasensitive fluorescence microscopy to observe the successive photodestruction of fluorophores within one oligomer. To make this method suitable for large oligomers, the researchers have extended this method to be used in combination with sub-stoichiometric labeling, in which only a fraction of the monomeric proteins contain a fluorescent label, and statistical analysis of the data.

Alpha synuclein oligomers

The newly developed method can be applied in general to large macromolecular protein assemblies. The research team has focused on the neuronal alpha-synuclein, which plays a critical role in the onset and progression of Parkinson’s disease. They showed that alpha-synuclein oligomers prepared by a specific protocol are present as a single-well defined species consisting of 31 monomers per oligomer.

Explore further: Scientists identify most lethal known species of prion protein

More information: Full article: onlinelibrary.wiley.com/doi/10 … 2/anie.201200813/pdf

Related Stories

Scientists identify most lethal known species of prion protein

February 9, 2012
Scientists from the Florida campus of The Scripps Research Institute have identified a single prion protein that causes neuronal death similar to that seen in "mad cow" disease, but is at least 10 times more lethal than larger ...

SUMO defeats protein aggregates that typify Parkinson's disease

July 11, 2011
A small protein called SUMO might prevent the protein aggregations that typify Parkinson's disease (PD), according to a new study in the July 11, 2011, issue of The Journal of Cell Biology.

How Parkinson's disease starts and spreads

April 16, 2012
Injection of a small amount of clumped protein triggers a cascade of events leading to a Parkinson's-like disease in mice, according to an article published online this week in the Journal of Experimental Medicine.

Structure of Parkinson's disease protein identified

October 24, 2011
A team of researchers from the Petsko-Ringe and Pochapsky laboratories at Brandeis have produced and determined the structure of alpha-synuclein, a key protein associated with Parkinson’s disease.

Untangling the mysteries of Alzheimer's

February 2, 2012
One of the most distinctive signs of the development of Alzheimer's disease is a change in the behavior of a protein that neuroscientists call tau. In normal brains, tau is present in individual units essential to neuron ...

Recommended for you

Scientists find key to regenerating blood vessels

November 23, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) identifies a signaling pathway that is essential for angiogenesis, the growth of new blood vessels from pre-existing vessels. The ...

Surprising roles for muscle in tissue regeneration, study finds

November 22, 2017
A team of researchers at Whitehead has illuminated an important role for different subtypes of muscle cells in orchestrating the process of tissue regeneration. In a paper published in the November 22 issue of Nature, they ...

Study reveals new mechanisms of cell death in neurodegenerative disorders

November 22, 2017
Researchers at King's College London have discovered new mechanisms of cell death, which may be involved in debilitating neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease.

How rogue immune cells cross the blood-brain barrier to cause multiple sclerosis

November 21, 2017
Drug designers working on therapeutics against multiple sclerosis should focus on blocking two distinct ways rogue immune cells attack healthy neurons, according to a new study in the journal Cell Reports.

New simple test could help cystic fibrosis patients find best treatment

November 21, 2017
Several cutting-edge treatments have become available in recent years to correct the debilitating chronic lung congestion associated with cystic fibrosis. While the new drugs are life-changing for some patients, they do not ...

Researchers discover key signaling protein for muscle growth

November 20, 2017
Researchers at the University of Louisville have discovered the importance of a well-known protein, myeloid differentiation primary response gene 88 (MyD88), in the development and regeneration of muscles. Ashok Kumar, Ph.D., ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.