New class of proteins allows breast cancer cells to evade tyrosine kinase inhibitors

August 13, 2012

Aberrant regulation of cell growth pathways is required for normal cells to become cancerous, and in many types of cancer, cell growth is driven by a group of enzymes known as receptor tyrosine kinases (RTKs). The RTK epidermal growth factor receptor (EGFR) is overexpressed in over 30% of breast cancers; however, drugs that target RTKs, known as tyrosine kinase inhibitors (TKIs) have not been effective in treating breast cancer. Researchers believe that the cancer cells escape TKIs by circumventing the RTKs and utilizing other enzymes that are not TKI-sensitive.

In the current issue of the , two groups identify a pair of related oncogenes, FAM83A and B, which allow to survive TKI treatment. Researchers led by Mina Bissell at the Lawrence Berkeley National Laboratory in Berkeley, CA performed a screen of human breast cancer cell lines to identify genes that make cancer cells resistant to EGFR TKIs.

Bissell and colleagues determined that increased expression of FAM83A increases proliferation and invasion, while decreased expression delays tumor growth in mice and renders cancer cells sensitive to TKIs.

At Case Western Reserve Medical School in Cleveland, OH, Mark Jackson and colleagues identified FAM83B as a gene that allows normal human mammary cells to become malignant. Further, expression of FAM83A and B in human tumors was correlated with decreased overall survival. Taken together, these studies identify two genes that may serve as novel therapeutic targets.

In a companion piece, Steven Grant of the Medical College of Virginia discusses the impact of this research on the development of strategies to overcome resistance to currently available TKIs.

Explore further: PET scan with [11C]erlotinib may provide noninvasive method to identify TKI-responsive lung tumors

More information:
Identification of FAM83B as a novel intermediary in EGFR/RAS-mediated transformation, Journal of Clinical Investigation.
FAM83A confers EGFR-TKI resistance in breast cancer cells and in mice, Journal of Clinical Investigation.
FAM83A and FAM83B: candidate oncogenes and TKI resistance mediators, Journal of Clinical Investigation.

Related Stories

PET scan with [11C]erlotinib may provide noninvasive method to identify TKI-responsive lung tumors

July 5, 2011
A non-invasive PET imaging technique may identify lung cancers that respond best to tyrosine kinase inhibitors (TKIs), allowing doctors to better select patients for personalized therapy, according to research presented at ...

Double whammy: RNAi enhances lung cancer therapy

March 20, 2012
Non-small cell lung cancer (NSCLC), the most common form of lung cancer, is usually treated with surgery and chemotherapy. However, a small group of patients can also be helped by treatment with tyrosine kinase inhibitors ...

Computational analysis identifies drugs to treat drug-resistant breast cancer

July 31, 2012
Researchers have used computational analysis to identify a new Achilles heel for the treatment of drug-resistant breast cancer. The results, which are published in Molecular Systems Biology, reveal that the disruption of ...

Recommended for you

CAR-T immunotherapy may help blood cancer patients who don't respond to standard treatments

October 20, 2017
Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine in St. Louis is one of the first centers nationwide to offer a new immunotherapy that targets certain blood cancers. Newly approved ...

Researchers pinpoint causes for spike in breast cancer genetic testing

October 20, 2017
A sharp rise in the number of women seeking BRCA genetic testing to evaluate their risk of developing breast cancer was driven by multiple factors, including celebrity endorsement, according to researchers at the University ...

Study shows how nerves drive prostate cancer

October 19, 2017
In a study in today's issue of Science, researchers at Albert Einstein College of Medicine, part of Montefiore Medicine, report that certain nerves sustain prostate cancer growth by triggering a switch that causes tumor vessels ...

Gene circuit switches on inside cancer cells, triggers immune attack

October 19, 2017
Researchers at MIT have developed a synthetic gene circuit that triggers the body's immune system to attack cancers when it detects signs of the disease.

One to 10 mutations are needed to drive cancer, scientists find

October 19, 2017
For the first time, scientists have provided unbiased estimates of the number of mutations needed for cancers to develop, in a study of more than 7,500 tumours across 29 cancer types. Researchers from the Wellcome Trust Sanger ...

New study reveals breast cancer cells recycle their own ammonia waste as fuel

October 19, 2017
Breast cancer cells recycle ammonia, a waste byproduct of cell metabolism, and use it as a source of nitrogen to fuel tumor growth, report scientists from Harvard Medical School in the journal Science.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.