Clinical trials aim to help boys with fragile X syndrome

August 2, 2012 By Quinn Eastmann

In some ways, Samuel is like many other little boys. He likes swimming, riding in his grandfather's boat, and playing games on the family's Wii. His face lights up when he sees an image of Lightning McQueen from the movie Cars.

However, learning to talk has been slow for him. Now six years old, Samuel learned to count before he could say "Mommy." His parents noticed something was different early in his development.

"He still learns and grows. He just does those things differently," says Samuel's father, John McKinnon.

For one thing, Samuel tends to flap his arms when excited—one reason that his pediatrician first suspected he might have a type of autism spectrum disorder. In 2008, Samuel was diagnosed with fragile X syndrome, the most common inherited form of intellectual disability and also the most common single-gene cause of autism.

The video will load shortly

His parents threw themselves into supporting him. They taught him sign language to help his communication skills. His mother, Wendy McKinnon, puts many miles on her car getting him to appointments with several therapists—speech, physical, and occupational as well as a specialist in applied behavior analysis.

Now, Samuel is one of the youngest participants in a clinical study testing arbaclofen, a drug that scientists think could compensate for the changes in the brain caused by fragile X syndrome. His parents say they are keeping their expectations in check.

"Our family and our therapists are telling us the same thing—not to put too much hope in the trial," says Wendy McKinnon. "We're trying hard not to read too much into it if Samuel says a new word or plays more with other kids."

Targeting molecules

The majority of children with fragile X syndrome have some kind of developmental delay, and their behavior varies widely. Behavior problems can include hyperactivity, inattentiveness, aggression, or social withdrawal. The average age of diagnosis is approximately 3-1/2 years.

In 1991, a team led by Stephen Warren, Emory's chair of human genetics, discovered the gene whose inactivation is responsible for fragile X. Two decades later, a potential strategy for treating fragile X based on Warren's landmark work is reaching a critical phase in human clinical trials. Three pharmaceutical companies—Seaside Therapeutics, Hoffmann-LaRoche, and Novartis—are sponsoring multi-center studies of drug therapies that take the same biochemical approach, and Emory is participating in all three.

While some children with fragile X syndrome take antidepressants or attention-focusing stimulants, the medications in these studies are the first treatments that scientists think can specifically target the molecular changes caused by fragile X inactivation. Previously tested with promising results in adults with , the drugs are now being tested in children and teens with the disorder—some as young as five. Clinicians expect these studies to answer important questions about whether learning and behavior deficits can improve with the medications.

"It's exciting that the research has gotten to this point," says Jeannie Visootsak, principal investigator for the fragile X clinical trials at Emory. "Childhood is when the behavioral problems typically start, so earlier intervention could potentially make more of a difference."

Explore further: New clinical trial to examine medication to treat social withdrawal in Fragile X and autism

Related Stories

New clinical trial to examine medication to treat social withdrawal in Fragile X and autism

July 20, 2011
Children and adults with social withdrawal due to Fragile X syndrome, the most common cause of inherited intellectual disability and the most common known single gene cause of autism, may benefit from an experimental drug ...

New clue found for Fragile X syndrome-epilepsy link

April 12, 2011
Individuals with fragile X syndrome, the most common inherited form of intellectual disability, often develop epilepsy, but so far the underlying causes are unknown. Researchers have now discovered a potential mechanism that ...

New drug-like molecule to treat fragile X Syndrome

September 16, 2011
Researchers at Vanderbilt University Medical Center, in collaboration with Seaside Therapeutics in Cambridge, Mass., have achieved a milestone in the development of a potential new treatment for fragile X syndrome, the most ...

Recommended for you

Research examines lung cell turnover as risk factor and target for treatment of influenza pneumonia

July 24, 2017
Influenza is a recurring global health threat that, according to the World Health Organization, is responsible for as many as 500,000 deaths every year, most due to influenza pneumonia, or viral pneumonia. Infection with ...

Scientists propose novel therapy to lessen risk of obesity-linked disease

July 24, 2017
With obesity related illnesses a global pandemic, researchers propose in the Journal of Clinical Investigation using a blood thinner to target molecular drivers of chronic metabolic inflammation in people eating high-fat ...

Raccoon roundworm—a hidden human parasite?

July 24, 2017
The raccoon that topples your trashcan and pillages your garden may leave more than just a mess. More likely than not, it also contaminates your yard with parasites—most notably, raccoon roundworms (Baylisascaris procyonis).

Google searches can be used to track dengue in underdeveloped countries

July 20, 2017
An analytical tool that combines Google search data with government-provided clinical data can quickly and accurately track dengue fever in less-developed countries, according to new research published in PLOS Computational ...

MRSA emerged years before methicillin was even discovered

July 19, 2017
Methicillin resistant Staphylococcus aureus (MRSA) emerged long before the introduction of the antibiotic methicillin into clinical practice, according to a study published in the open access journal Genome Biology. It was ...

New test distinguishes Zika from similar viral infections

July 18, 2017
A new test is the best-to-date in differentiating Zika virus infections from infections caused by similar viruses. The antibody-based assay, developed by researchers at UC Berkeley and Humabs BioMed, a private biotechnology ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.