New clue found for Fragile X syndrome-epilepsy link

April 12, 2011
Kv4.2, which regulates electrical signals, is lower in cells from mice missing FMRP ("KO") compared to wild-type ("WT"). Credit: Christina Gross

Individuals with fragile X syndrome, the most common inherited form of intellectual disability, often develop epilepsy, but so far the underlying causes are unknown. Researchers have now discovered a potential mechanism that may contribute to the link between epilepsy and fragile X syndrome.

The protein that is missing in fragile X syndrome, FMRP, controls the production of a protein that regulates electrical signals in brain cells, scientists at Emory University School of Medicine have found. The results were published April 13 in the Journal of Neuroscience.

Individuals with fragile X syndrome tend to have a hyperexcitable , which can be displayed in several ways: hyperactivity, anxiety, increased sensory sensitivity, and epileptic seizures in 20 percent of all cases. The Emory team's findings suggest that a therapeutic strategy against fragile X syndrome now being tested in clinical trials could also address this aspect of the disease.

"The link between fragile X syndrome and was not well understood," says senior author Gary Bassell, PhD, professor of cell biology and neurology at Emory University School of Medicine. "This finding might provide a molecular explanation that could also give some clues on therapeutic strategies."

The co-first authors of the paper are postdoctoral fellow Christina Gross and PhD candidate Xiaodi Yao. They and their colleagues found that in mice missing FMRP – a model for humans with fragile X syndrome – brain cells produce less of a protein called Kv4.2.

FMRP is known to regulate several genes, and it's possible that changes in others besides Kv4.2 contribute to the development of epilepsy. For many of the genes that FMRP controls, it normally acts as a brake, by interfering with the step in which RNA is made into protein. In FMRP's absence, this leads to runaway protein production at synapses the junctions between where chemical communication occurs. Kv4.2 appears to be an exception, because in FMRP's absence, less Kv4.2 protein is produced.

The protein Kv4.2 is an ion channel, which allows electrical charge to flow out of neurons when they are stimulated. Kv4.2 is the major ion channel regulating the excitability of neurons in the hippocampus, a region of the brain important for learning and memory. A mutation of the gene encoding Kv4.2 leads to temporal lobe epilepsy in humans.

In laboratory tests, drugs that tamp down glutamate signaling could partially restore levels of the Kv4.2 protein in mice missing the fragile X protein. This suggests that drugs that act against glutamate signaling, which are now in clinical trials, could reduce hyperexcitability in humans with fragile X syndrome.

Another strategy could be to identify drugs that target the Kv4.2 protein's function directly, Bassell says.

Not all individuals with fragile X syndrome develop epilepsy. The loss of FMRP doesn't shut Kv4.2 production off completely, and other genetic variations and environmental factors probably contribute to the development of epilepsy in individuals with , Bassell says.

More information: C. Gross, X. Yao, D.L. Pong, A. Jeromin and G.J. Bassell. Fragile X Mental Retardation Protein Regulates Protein Expression and mRNA Translation of the Potassium Channel Kv4.2. J. Neurosci, 31

Related Stories

Recommended for you

New approach helps rodents with spinal cord injury breathe on their own

October 17, 2017
One of the most severe consequences of spinal cord injury in the neck is losing the ability to control the diaphragm and breathe on one's own. Now, investigators show for the first time in laboratory models that two different ...

Pair of discoveries illuminate new paths to flu and anthrax treatments

October 17, 2017
Two recent studies led by biologists at the University of California San Diego have set the research groundwork for new avenues to treat influenza and anthrax poisoning.

New method to measure how drugs interact

October 17, 2017
Cancer, HIV and tuberculosis are among the many serious diseases that are frequently treated with combinations of three or more drugs, over months or even years. Developing the most effective therapies for such diseases requires ...

A new compound targets energy generation, thereby killing metastatic cells

October 17, 2017
Cancer can most often be successfully treated when confined to one organ. But a greater challenge lies in treating cancer that has metastasized, or spread, from the primary tumor throughout the patient's body. Although immunotherapy ...

Research finds that zinc binding is vital for regulating pH levels in the brain

October 17, 2017
Researchers in Oslo, Norway, have discovered that zinc binding plays an important role in the sensing and regulation of pH in the human brain. The findings come as one of the first studies that directly link zinc binding ...

Researchers find factor that delays wound healing

October 17, 2017
New research carried out at The University of Manchester has identified a bacterium—normally present on the skin that causes poor wound healing in certain conditions.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.