'DNA wires' could help physicians diagnose disease

August 19, 2012

In a discovery that defies the popular meaning of the word "wire," scientists have found that Mother Nature uses DNA as a wire to detect the constantly occurring genetic damage and mistakes that ― if left unrepaired ― can result in diseases like cancer and underpin the physical and mental decline of aging.

That topic ― wires and their potential use in identifying people at risk for certain diseases ― is the focus of a plenary talk during the 244th National Meeting & Exposition of the American Chemical Society, the world's largest scientific society.

"DNA is a very fragile and special wire," said Jacqueline K. Barton, Ph.D., who delivered the talk. "You're never going to wire a house with it, and it isn't sturdy enough to use in popular electronic devices. But that fragile state is exactly what makes DNA so good as an electrical biosensor to identify DNA damage."

Barton won the U.S. National Medal of Science, the nation's highest honor for scientific achievement, for discovering that cells use the double strands of the DNA helix like a wire for signaling, which is critical to detecting and repairing . She is a professor of chemistry and is chair of the division of chemistry and chemical engineering at the California Institute of Technology in Pasadena.

Damage is constantly occurring to DNA, Barton explained ― damage that skin cells, for instance, receive from excessive exposure to sunlight or that lung cells get hit with from carcinogens in cigarette smoke. Cells have a natural repair system in which special proteins constantly patrol the spiral-staircase architecture of DNA. They monitor the 3 billion units, or "base pairs," in DNA, looking for and mending damage from carcinogens and other sources.

Barton and other scientists noticed years ago that the DNA architecture chemically resembles the solid-state materials used in transistors and other electronic components. And DNA's bases, or units, are stacked on top of each other in an arrangement that seemed capable of conducting electricity.

"It's like a stack of copper pennies," said Barton. "And when in good condition and properly aligned, that stack of copper pennies can be conductive. But if one of the pennies is a little bit awry ― if it's not stacked so well ― then you're not going to be able to get good conductivity in it. But if those bases are mismatched or if there is any other damage to the DNA, as can happen with damage that leads to cancer, the wire is interrupted and electricity will not flow properly."

Barton's team established that the electrons that comprise a flow of electricity can move from one end of a DNA strand to the other, just as they do through an electrical wire. In one recent advance, the team was able to send electricity down a 34-nanometer-long piece of DNA. That might not sound like much — a nanometer is one-tenth the width of a human hair. But that is just the right scale for use in medical diagnostic devices and biosensors to pick up on mutations, or changes, in DNA that could lead to cancer and other diseases.

Barton's research suggested that DNA uses its electrical properties to signal repair proteins that fix DNA damage. If the DNA is no longer conducting electricity properly, that would be a signal for repair proteins to do their thing. Barton's team is applying that knowledge in developing "DNA chips," devices that take advantage of DNA's natural electrical conductivity and its ability to bind to other strands of DNA that have a complementary sequence of base units, and thus probe that sequence for damage. Such a DNA chip would help diagnose disease risk by changes in electrical conductivity resulting from mutations or some other damage.

Explore further: Scientists identify protein that improves DNA repair under stress

Related Stories

Scientists identify protein that improves DNA repair under stress

June 16, 2011
Cells in the human body are constantly being exposed to stress from environmental chemicals or errors in routine cellular processes. While stress can cause damage, it can also provide the stimulus for undoing the damage. ...

Molecular corkscrew

November 8, 2011
Scientists from the universities of Zurich and Duisburg-Essen have discovered a specific function of the protein p97/VCP. They demonstrate that the protein repairs DNA breaks like a corkscrew, a repair mechanism that could ...

Recommended for you

Researchers describe mechanism that underlies age-associated bone loss

September 22, 2017
A major health problem in older people is age-associated osteoporosis—the thinning of bone and the loss of bone density that increases the risk of fractures. Often this is accompanied by an increase in fat cells in the ...

Researchers develop treatment to reduce rate of cleft palate relapse complication

September 22, 2017
Young people with cleft palate may one day face fewer painful surgeries and spend less time undergoing uncomfortable orthodontic treatments thanks to a new therapy developed by researchers from the UCLA School of Dentistry. ...

Exosomes are the missing link to insulin resistance in diabetes

September 21, 2017
Chronic tissue inflammation resulting from obesity is an underlying cause of insulin resistance and type 2 diabetes. But the mechanism by which this occurs has remained cloaked, until now.

Thousands of new microbial communities identified in human body

September 20, 2017
A new study of the human microbiome—the trillions of microbial organisms that live on and within our bodies—has analyzed thousands of new measurements of microbial communities from the gut, skin, mouth, and vaginal microbiome, ...

Study finds immune system is critical to regeneration

September 20, 2017
The answer to regenerative medicine's most compelling question—why some organisms can regenerate major body parts such as hearts and limbs while others, such as humans, cannot—may lie with the body's innate immune system, ...

Immune cells produce wound healing factor, could lead to new IBD treatment

September 20, 2017
Specific immune cells have the ability to produce a healing factor that can promote wound repair in the intestine, a finding that could lead to new, potential therapeutic treatments for inflammatory bowel disease (IBD), according ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.