Researchers identify new drug target for schizophrenia

August 13, 2012

(Medical Xpress) -- Researchers at Mount Sinai School of Medicine may have discovered why certain drugs to treat schizophrenia are ineffective in some patients. Published online in Nature Neuroscience, the research will pave the way for a new class of drugs to help treat this devastating mental illness, which impacts one percent of the world's population, 30 percent of whom do not respond to currently available treatments.

A team of researchers at Mount Sinai School of Medicine set out to discover what epigenetic factors, or external factors that influence , are involved in this treatment-resistance to atypical antipsychotic drugs, the standard of care for schizophrenia. They discovered that, over time, an enzyme in the brains of schizophrenic patients analyzed at autopsy begins to compensate for the prolonged caused by antipsychotics, resulting in reduced efficacy of the drugs.

"These results are groundbreaking because they show that may be caused by the very medications prescribed to treat schizophrenia, when administered chronically," said Javier Gonzalez-Maeso, PhD, Assistant Professor of Psychiatry and Neurology at Mount Sinai School of Medicine and lead investigator on the study.

They found that an enzyme called HDAC2 was highly expressed in the brain of mice chronically treated with antipsychotic drugs, resulting in lower expression of the receptor called mGlu2, and a recurrence of . A similar finding was observed in the postmortem brains of . The research team administered a chemical called suberoylanilide hydroxamic acid (SAHA), which inhibits the entire family of HDACs. They found that this treatment prevented the detrimental effect of the antipsychotic called clozapine on mGlu2 expression, and also improved the therapeutic effects of in mouse models.

Previous research conducted by the team showed that chronic treatment with the antipsychotic clozapine causes repression of mGlu2 expression in the frontal cortex of mice, a brain area key to cognition and perception. The researchers hypothesized that this effect of clozapine on mGlu2 may play a crucial role in restraining the therapeutic effects of antipsychotic drugs.

"We had previously found that chronic antipsychotic drug administration causes biochemical changes in the brain that may limit the therapeutic effects of these drugs,"said Dr. Gonzalez-Maeso. "We wanted to identify the molecular mechanism responsible for this biochemical change, and explore it as a new target for new drugs that enhance the therapeutic efficacy of antipsychotic drugs."

Mitsumasa Kurita, PhD, a postdoctoral fellow at Mount Sinai and the lead author of the study, said, "We found that trigger an increase of HDAC2 in frontal cortex of individuals with schizophrenia, which then reduces the presence of mGlu2, and thereby limits the efficacy of these drugs," said

Dr. Gonzalez-Maeso's team is now developing compounds that specifically inhibit HDAC2 as adjunctive treatments to antipsychotics. The study was funded by the National Institutes of Health.

Explore further: Researchers develop method for advancing development of antipsychotic drugs

Related Stories

Researchers develop method for advancing development of antipsychotic drugs

November 23, 2011
Researchers interested in the treatment of schizophrenia and dementia have clarified how antipsychotic drugs that target a complex of two receptors at the surface of cells in the brain work, according to a new study published ...

Study suggests antipsychotic drugs during pregnancy linked to increased risk of gestational diabetes

July 2, 2012
A study that examined maternal use of antipsychotic drugs during pregnancy suggests that these medications may be linked to an increased risk of gestational diabetes, according to a report in the July issue of Archives of ...

Antipsychotics do help many with schizophrenia, study finds

May 3, 2012
(HealthDay) -- A new study finds that antipsychotic drugs can help many people with schizophrenia, cutting patients' risk of relapse by 60 percent.

Recommended for you

Gene mutation causes low sensitivity to pain

December 13, 2017
A UCL-led research team has identified a rare mutation that causes one family to have unusually low sensitivity to pain.

Activating MSc glutamatergic neurons found to cause mice to eat less

December 13, 2017
(Medical Xpress)—A trio of researchers working at the State University of New York has found that artificially stimulating neurons that exist in the medial septal complex in mouse brains caused test mice to eat less. In ...

Scientists discover blood sample detection method for multiple sclerosis

December 13, 2017
A method for quickly detecting signs of multiple sclerosis has been developed by a University of Huddersfield research team.

LLNL-developed microelectrodes enable automated sorting of neural signals

December 13, 2017
Thin-film microelectrode arrays produced at Lawrence Livermore National Laboratory (LLNL) have enabled development of an automated system to sort brain activity by individual neurons, a technology that could open the door ...

Intermittent fasting found to increase cognitive functions in mice

December 12, 2017
(Medical Xpress)—The Daily Mail spoke with the leader of a team of researchers with the National Institute on Aging in the U.S. and reports that they have found that putting mice on a diet consisting of eating nothing every ...

Discovery deepens understanding of brain's sensory circuitry

December 12, 2017
Because they provide an exemplary physiological model of how the mammalian brain receives sensory information, neural structures called "mouse whisker barrels" have been the subject of study by neuroscientists around the ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

tadchem
5 / 5 (1) Aug 13, 2012
Many schizophrenics develop an apparent resistance to the treatments, and increased dosage does little to help. My late brother found that after a while only ethanol would mute the interminable chatter of the internal voices. He traded his health and a large portion of his life expectancy for peace *within* his mind.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.