Study pinpoints genes involved in diet-mediated life-extension

August 14, 2012 By Julie Owens

Researchers at the University of Liverpool have developed a new method to identify genes involved in diet-mediated life-extension which allowed them to find three novel genes that extend lifespan in yeast.

The researchers in Liverpool, in collaboration with researchers at the University of Arkansas, studied , which consists of limiting certain factors in diet (like calories) without malnutrition and has been shown to increase lifespan from yeast to monkeys. Many genes had been associated with dietary restriction before, and the researchers developed a method to study how the genes interact with each other as part of networks to decipher the mechanisms involved and find possible missing links. This allowed them to identify new genes that mediate life-extension in response to dietary restriction. Three of such genes they then showed to extend in yeast via dietary restriction-related mechanisms.

Some of the new genes identified may have similar functions in humans and could be potential targets for anti-ageing interventions. Dr Joao Pedro de Magalhaes, who led the study, explains: "Some targets for retarding ageing in humans being clinically tested were initially discovered in yeast, so we definitely want to continue this work with a view of ultimately tackling the human and developing treatments for age-related diseases. Besides, our method can be used to predict genes involved in life-extension mediated by dietary restriction in mammals and even in humans. We just tested our predictions in because it was quicker and cheaper, but we are now looking to obtain funding to pursue this line of research in more complex models. I am definitely optimistic that it is possible to develop an anti-ageing pill."

The work is published in August in .

Explore further: Cutting calories might help you live longer, but not without increased physical activity

More information: doi:10.1371/journal.pgen.1002834

Related Stories

Cutting calories might help you live longer, but not without increased physical activity

July 3, 2012
Dietary restriction can slow age-related diseases and extend the lifespan of all species tested to date. Understanding this phenomenon might help people live longer, preferably without having to drastically limit calories. ...

Is the 'longevity gene' nearing the end of its life?

September 21, 2011
Sirtuins, proteins believed to significantly increase lifespan in a number of organisms – and the claimed target of some anti-ageing creams – do not, in fact, affect animal longevity, according to new research funded ...

Recommended for you

New approach to studying chromosomes' centers may reveal link to Down syndrome and more

November 20, 2017
Some scientists call it the "final frontier" of our DNA—even though it lies at the center of every X-shaped chromosome in nearly every one of our cells.

Genome editing enhances T-cells for cancer immunotherapy

November 20, 2017
Researchers at Cardiff University have found a way to boost the cancer-destroying ability of the immune system's T-cells, offering new hope in the fight against a wide range of cancers.

A math concept from the engineering world points to a way of making massive transcriptome studies more efficient

November 17, 2017
To most people, data compression refers to shrinking existing data—say from a song or picture's raw digital recording—by removing some data, but not so much as to render it unrecognizable (think MP3 or JPEG files). Now, ...

Genetic mutation in extended Amish family in Indiana protects against aging and increases longevity (Update)

November 15, 2017
The first genetic mutation that appears to protect against multiple aspects of biological aging in humans has been discovered in an extended family of Old Order Amish living in the vicinity of Berne, Indiana, report Northwestern ...

US scientists try first gene editing in the body

November 15, 2017
Scientists for the first time have tried editing a gene inside the body in a bold attempt to permanently change a person's DNA to try to cure a disease.

Genetic variant prompts cells to store fat, fueling obesity

November 13, 2017
Obesity is often attributed to a simple equation: People are eating too much and exercising too little. But evidence is growing that at least some of the weight gain that plagues modern humans is predetermined. New research ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

JVK
1 / 5 (1) Aug 15, 2012
Nutrient chemical-dependent aging altered by the epigenetic effects of dietary restriction via the interactome seems to be less a function of random mutations than one that could be attributed to a pattern of design in biology. For example, in microbes the nutrient chemicals metabolize to pheromones that control reproduction. This links what organisms eat to the species specific pheromones they produce in a linear progression across adaptive evolution exemplified here in species from microbes to mice (i.e., mammals). That might be an important pattern to consider in the context of chemical ecology and adaptive evolution via ecological, social, neurogenic, and socio-cognitive niche construction that appears to begin with the role of the nutrient, glucose, in yeasts. Of course, glucose is essential to the construction of our socio-cognitive niche, which makes me think -- and allows me to think -- that much more than a theory of random mutations are involved.
JVK
1 / 5 (1) Aug 15, 2012
The essential genes tend to be located in the center of the interactome rather than in the periphery, which suggests the central role for regulation of cell division by nutrient chemicals, like glucose. Glucose also regulates gonadotropin releasing hormone (GnRH) from what might be called the center of the mammalian interactome: the hypothalamic GnRH pulse.

In mammals, GnRH pulsatility links the epigenetic effects of nutrient chemicals and pheromones to the interactome and thus directly to nutrient chemical-dependent species-specific behaviors via adaptive evolution through ecological, social, neurogenic, and socio-cognitive niche construction. However, there is no denying the role of dietary fatty acids in GnRH-directed socio-cognitive niche construction.

The article makes clear that yeast cells managed to evolve into intelligent mammals. The yeast mating pheromone is so similar to mammalian GnRH--a molecule conserved across 400 million years of vertebrate evolution that...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.