New genetic study defines the genetic map of the Jewish Diasporas

August 6, 2012, Albert Einstein College of Medicine

A new genetic analysis focusing on Jews from North Africa has provided an overall genetic map of the Jewish Diasporas. The findings support the historical record of Middle Eastern Jews settling in North Africa during Classical Antiquity, proselytizing and marrying local populations, and, in the process, forming distinct populations that stayed largely intact for more than 2,000 years. The study, led by researchers at Albert Einstein College of Medicine of Yeshiva University, was published online today in the Proceedings of the National Academy of Sciences.

"Our new findings define North African Jews, complete the overall structure for the various groups of the Jewish Diaspora, and enhance the case for a biological basis for Jewishness," said study leader Harry Ostrer, M.D. , professor of pathology, of genetics and of pediatrics at Einstein and director of genetic and genomic testing for the division of at Montefiore Medical Center. Dr. Ostrer noted that obtaining a comprehensive of various Jewish subpopulations can help reveal to heart disease, cancer, diabetes and other .

Harry Ostrer, M.D., discusses how his research into a new genetic analysis focusing on Jews from North Africa has provided an overall genetic map of the Jewish Diasporas. Dr. Ostrer is professor of pathology, of genetics and of pediatrics at Einstein and director of genetic and genomic testing for the division of clinical pathology at Montefiore Medical Center. Credit: Albert Einstein College of Medicine

In a previous genetic analysis, the researchers showed that modern-day Sephardic (Greek and Turkish), Ashkenazi (Eastern European) and Mizrahi (Iranian, Iraqi and Syrian) Jews that originated in Europe and the Middle East are more related to each other than to their contemporary non-Jewish neighbors, with each group forming its own cluster within the larger Jewish population. Further, each group demonstrated Middle-Eastern ancestry and varying degrees of mixing with surrounding populations. Two of the major Jewish populations—Middle Eastern and European Jews—were found to have diverged from each other approximately 2,500 years ago.

The current study extends that analysis to North African Jews—the second largest Jewish Diaspora group. Their relatedness to each other, to other Jewish Diaspora groups, and to their non-Jewish North African neighbors had not been well defined. The study also included members of Jewish communities in Ethiopia, Yemen and Georgia. In all, the researchers analyzed the genetic make-up of 509 Jews from 15 populations along with data on 114 individuals from seven North African non-Jewish populations.

North African Jews exhibited a high degree of endogamy, or marriage within their own religious and cultural group in accordance with custom. Two major subgroups within this overall population were identified: Moroccan/Algerian Jews and Djerban (Tunisian)/Libyan Jews. The two subgroups varied in their degree of European mixture, with Moroccan/Algerian Jews tending to be more related to Europeans—most likely stemming from the expulsion of Sephardic Jews from Spain during the Inquisition, starting in 1492. Ethiopian and Yemenite Jewish populations also formed distinctive genetically linked clusters, as did Georgian Jews.

Explore further: Researchers find 5 risk biomarkers for Crohn's disease in Jews of Eastern European descent

Related Stories

Researchers find 5 risk biomarkers for Crohn's disease in Jews of Eastern European descent

March 8, 2012
In the largest study of its kind, researchers from Mount Sinai School of Medicine have discovered five new genetic mutations associated with Crohn's disease in Jews of Eastern European descent, also known as Ashkenazi Jews. ...

Population genetics reveals shared ancestries

May 24, 2011
More than just a tool for predicting health, modern genetics is upending long-held assumptions about who we are. A new study by Harvard researchers casts new light on the intermingling and migration of European, Middle Eastern ...

Recommended for you

Receiving genetic information can change risk

December 11, 2018
Millions of people in the United States alone have submitted their DNA for analysis and received information that not only predicts their risk for disease but, it turns out, in some cases might also have influenced that risk, ...

HER2 mutations can cause treatment resistance in metastatic ER-positive breast cancer

December 11, 2018
Metastatic breast cancers treated with hormone therapy can become treatment-resistant when they acquire mutations in the human epidermal growth factor receptor 2 (HER2) that were not present in the original tumor, reports ...

How glial cells develop in the brain from neural precursor cells

December 11, 2018
Two types of cells are active in the brain: nerve cells and glial cells. Glial cells have long been regarded primarily as supportive cells, but researchers increasingly recognize that they play an active role in the communication ...

Big datasets pinpoint new regions to explore the genome for disease

December 10, 2018
Imagine rain falling on a square of sidewalk. While the raindrops appear to land randomly, over time a patch of sidewalk somehow remains dry. The emerging pattern suggests something special about this region. This analogy ...

Team seeks to create genetic map of worm's nervous system

December 10, 2018
How do you build a brain? What "rules" govern where neurons end up, how they connect to each other, and which functions they perform?

Genetic study of epilepsy points to potential new therapies

December 10, 2018
The largest study of its kind, led by international researchers including scientists at RCSI (Royal College of Surgeons in Ireland), has discovered 11 new genes associated with epilepsy.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.