New insights into why humans are more susceptible to cancer and other diseases

August 23, 2012

Chimpanzees rarely get cancer, or a variety of other diseases that commonly arise in humans, but their genomic DNA sequence is nearly identical to ours. So, what's their secret? Researchers reporting in the September issue of the American Journal of Human Genetics, have found that differences in certain DNA modifications, called methylation, might play a role.

The researchers discovered hundreds of genes that display different patterns of methylation between the two species. These different patterns of methylation lead to different levels of expression, and many of the genes involved are linked to specific human diseases. Given that environmental factors can affect DNA methylation, these results might help researchers to better understand how differences in genetics and environmental exposure contribute to differences, including different disease vulnerabilities, between the two species.

DNA methylation doesn't change a cell's underlying , but it does affect and can have a profound impact on processes such as aging and the development of disease. By using new state-of-the-art techniques to look at methylation maps and gene expression in the brains of chimpanzees and humans, the investigators found that changes in DNA methylation at least partially explain the divergence of gene-expression patterns between these species.

In addition, differentially methylated genes showed striking links with specific neurological and and cancers to which modern humans are particularly susceptible, suggesting that changes in might be linked to the evolution of humans' vulnerability to certain diseases.

"Our results hint, but by no means provide proof, that epigenetic divergence—or changes of chemical properties of DNA—may be particularly important for some disease-related phenotypes that are pertinent to modern humans," says senior author Dr. Soojin Yi, from the Georgia Institute of Technology. "Such findings, in the long-term, may contribute to the development of better therapeutic targets for some human diseases," she adds.

Explore further: Controlling patterns of DNA methylation

Related Stories

Controlling patterns of DNA methylation

October 28, 2011
A study performed by scientists in Dirk Schübeler's team at the Friedrich Miescher Institute for Biomedical Research in Basel identifies DNA sequences that autonomously determine DNA methylation patterns. Genomic patterns ...

Epigenetics alters genes in rheumatoid arthritis

July 3, 2012
It's not just our DNA that makes us susceptible to disease and influences its impact and outcome. Scientists are beginning to realize more and more that important changes in genes that are unrelated to changes in the DNA ...

Study gives clue as to how notes are played on the genetic piano

May 12, 2011
Japanese and U.S. scientists in the young field of epigenetics Thursday reported a rationale as to how specific genes are silenced and others are not. Because this effect can be reversed, it may be possible to devise therapies ...

Recommended for you

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.