New insights into salt transport in the kidney

August 23, 2012, Helmholtz Association of German Research Centres
The photo shows sections of a kidney from a claudin-10-deficient mouse and from a control mouse. Black staining (right) shows calcium deposits in the renal medulla, which are characteristic for nephrocalcinosis, a serious disease characterized by calcium deposits in the kidney.Credit: Photo: Tilman Breiderhoff/ Copyright: MDC

Sodium chloride, better known as salt, is vital for the organism, and the kidneys play a crucial role in the regulation of sodium balance. However, the underlying mechanisms of sodium balance are not yet completely understood. Researchers of the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, Charité – Universitätsmedizin Berlin and the University of Kiel have now deciphered the function of a gene in the kidney and have thus gained new insights into this complex regulation process.

In humans, the kidneys filter around 1700 liters of blood every day, of which 180 liters are collected as primary urine and ultimately one to two liters of urine are excreted. The kidneys thus wash toxic waste products out of the body, but retain some useful substances and reintroduce them into the body, thus simultaneously regulating the and water balance.

Molecular velcro

In the study just published by Dr. Tilman Breiderhoff, Prof. Thomas Willnow (both MDC), as well as Dr. Nina Himmerkus and Prof. Markus Bleich (both of the University of Kiel) and Dr. Dominik Müller (Charité) the focus is on the claudin-10 gene, which is expressed in a specific segment of the kidney, in Henle's loop. In the thick ascending limb of this loop, , a large part of the filtered , as well as calcium and magnesium are reabsorbed. The under investigation, the claudin 10 protein, belongs to a family of proteins that connect the epithelial cells which cover the inner and outer surfaces of the body and stick them together like velcro. Claudins, however, also form pores, through which ions and substances are transported between the cells.

"If these transport processes are disturbed, this can lead to serious loss of function of the kidneys," Dr. Breiderhoff explained. As example he cited various human hereditary diseases in which either absorption of (Bartter syndrome) or of calcium and magnesium (familial hypomagnesemia with hypercalciuria and nephrocalcinosis – FHHNC) is disturbed. The second disease is characterized by a lack of magnesium in the blood and an excess of calcium in the urine, which leads to calcification of the kidneys. It is caused by mutations in one of two genes (claudin 16 or claudin 19), which also belong to the gene family of the claudins.

The researchers have now demonstrated in mice that the claudin-10 gene is involved in the reabsorption of salt in the kidney. If the gene in the kidney is deactivated, the reabsorption of sodium is impaired, but the reabsorption of calcium and magnesium is increased. The consequence is that the mice have elevated magnesium levels in the blood, and excess calcium is deposited in the kidney. Simultaneously, the urine volume is increased because the kidneys of the mice cannot reabsorb enough water, a sign that the recovery of salt is disturbed.

Explore further: Kidney stone mystery solved

More information: PNAS Early Edition, doi/10.1073/pnas.1203834109

Related Stories

Kidney stone mystery solved

April 18, 2012
Kidney stones strike an estimated 1 million Americans each year, and those who have experienced the excruciating pain say it is among the worst known to man (or woman).

Diets high in salt could deplete calcium in the body: research

July 24, 2012
The scientific community has always wanted to know why people who eat high-salt diets are prone to developing medical problems such as kidney stones and osteoporosis.

Kidney damage and high blood pressure

September 22, 2011
The kidney performs several vital functions. It filters blood, removes waste products from the body, balances the body's fluids, and releases hormones that regulate blood pressure. A number of diseases and conditions can ...

Abnormal activation of a protein may explain deadly link between high salt intake and obesity

September 19, 2011
Dietary salt intake and obesity are two important risk factors in the development of high blood pressure. Each packs its own punch, but when combined, they deliver more damage to the heart and kidneys than the sum of their ...

Recommended for you

New study offers insights on genetic indicators of COPD risk

January 16, 2018
Researchers have discovered that genetic variations in the anatomy of the lungs could serve as indicators to help identify people who have low, but stable, lung function early in life, and those who are particularly at risk ...

Previous influenza virus exposures enhance susceptibility in another influenza pandemic

January 16, 2018
While past exposure to influenza A viruses often builds immunity to similar, and sometimes different, strains of the virus, Canadian researchers are calling for more attention to exceptions to that rule.

Don't hold your nose and close your mouth when you sneeze, doctors warn

January 15, 2018
Pinching your nose while clamping your mouth shut to contain a forceful sneeze isn't a good idea, warn doctors in the journal BMJ Case Reports.

New antifungal provides hope in fight against superbugs

January 12, 2018
Microscopic yeast have been wreaking havoc in hospitals around the world—creeping into catheters, ventilator tubes, and IV lines—and causing deadly invasive infection. One culprit species, Candida auris, is resistant ...

Dengue takes low and slow approach to replication

January 11, 2018
A new study reveals how dengue virus manages to reproduce itself in an infected person without triggering the body's normal defenses. Duke researchers report that dengue pulls off this hoax by co-opting a specialized structure ...

Different strains of same bacteria trigger widely varying immune responses

January 11, 2018
Genetic differences between different strains of the same pathogenic bacterial species appear to result in widely varying immune system responses, according to new research published in PLOS Pathogens.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.